
www.allitebooks.com

http://www.allitebooks.org

Getting Started with Python
and Raspberry Pi

Learn to design and implement reliable Python
applications on Raspberry Pi, using a range of external
libraries, the Raspberry Pi's GPIO port, and the camera
module

Dan Nixon

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Getting Started with Python and Raspberry Pi

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1210915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-159-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Dan Nixon

Reviewers
Ankit Aggarwal

Neil Broers

Yash Gajera

Bhavyanshu Parasher

David Whale

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Indrajit Das

Content Development Editor
Zeeyan Pinheiro

Technical Editor
Namrata Patil

Copy Editor
Alpha Singh

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Tejal Soni

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

Dan Nixon is a software and electronics engineer living in the north of England.
He has past experience of creating software for data analysis, process control, and
business intelligence applications. In most of these projects, Python was one of the
main languages used.

Dan previously authored another book on the uses of the Raspberry Pi, called
Raspberry Pi Blueprints, and has worked on many personal projects that use both
Python and the Raspberry Pi.

I would like to thank my mother and father for their support in
writing this book and Greg Fenton for his help in testing some of
the examples included.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

About the Reviewers

Ankit Aggarwal has been fascinated with science and technology since childhood.
He likes to experiment and learn new things. He is a software engineer and
researcher by profession and loves computer science. He wants to solve problems
using technology. His interests include science, technology, academic research,
music, photography, entrepreneurship, DIY, movies, anime, and much more.

He has worked in the fields of networking, distributed systems, pervasive/mobile
computing, data science, AI, and computer vision; the list goes on. Ankit has
authored IEEE Xplore research papers and is an active contributor to and author
of several open source projects. He is socially active, blogs occasionally, and
maintains his website at http://ankitaggarwal.me.

In his free time, he reads, takes part in competitive programming, captures photos
of nature with a lens, and watches TV shows, movies, and anime. When he is not
doing these things, he can be found jogging at the nearest ground.

Neil Broers is a Python developer by day and a hardware hacker by night,
building his "Smart Home," one Raspberry Pi at a time. He is an avid technical
blogger on www.foo.co.za, where he documents his adventures with home
automation. In 2014, he presented a talk on the Raspberry Pi and the Internet
of Things at the PyConZA conference in South Africa.

www.allitebooks.com

http://ankitaggarwal.me
www.foo.co.za
http://www.allitebooks.org

[FM-6]

Yash Gajera is an embedded software engineer at Insignex in Anand, India.
He studied electronics and communication engineering and graduated in 2014
from the A. D. Patel Institute of Technology, Anand. At Insignex, he has worked
on fully automated irrigation control systems. He did his final year project on the
Internet of Things. It was selected as the best project from the EC department at
Gujarat Technological University in 2014. Yash wrote a Python library for the
Zigbee protocol to work with the Raspberry Pi. He also has a lot of experience
in embedded system development and web technologies.

Bhavyanshu Parasher holds a BTech degree in computer science engineering.
He is currently working toward getting a master's degree in computer science.
He has been developing web applications since 2011. He also has experience in
developing apps for Android and Linux. He has authored and contributed to
various open source projects. Apart from computer science, he is also interested in
electronics. He has developed various projects using the Raspberry Pi, including
service bots, weather monitoring systems, and data analysis automation tools.
When he is not writing code, he spends time writing tutorials on his blog at
https://bhavyanshu.me.

David Whale is a software developer living in Essex, UK. He started coding as
a schoolboy aged 11, inspired by the school science technician to build his own
computer from a kit, and quickly progressed to writing machine code programs
because they were "small and fast." These early experiments led to some of his
code being used in a saleable educational word game when he was only 13.

David has been developing software professionally ever since, mainly writing
small and fast code that goes into electronic products, including automated
machinery, electric cars, mobile phones, energy meters, and wireless doorbells.

www.allitebooks.com

https://bhavyanshu.me/
http://www.allitebooks.org

[FM-7]

These days, he runs his own software consultancy called Thinking Binaries.
He spends much of his time helping design the next wave of the Internet, called
the Internet of Things. This means connecting electronic devices to the Internet.
The rest of the time, he volunteers for The Institution of Engineering and Technology,
running training courses for teachers, designing and running workshops and clubs
for school children, and generally being busy with his Raspberry Pi.

David was the technical editor of the book Adventures in Raspberry Pi. He is a coauthor
of the book Adventures in Minecraft and is the technical editor of the official Raspberry
Pi magazine, the MagPi.

I was really pleased to be asked to review this new book. Dan Nixon
has done an excellent job of getting you started with Python and
your Raspberry Pi, and he presents the material in an easy-to-follow
format. There are lots of fun ideas and building blocks here, which
I hope many readers will extend into bigger and more ambitious
projects of their own.

www.allitebooks.com

http://www.allitebooks.org

[FM-8]

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Your First Steps with Python on the Pi	 1

Installing and setting up Raspbian	 2
Writing to the SD card	 2

Windows	 2
Linux and Mac	 4

Booting the Pi for the first time	 6
The Python development tools	 13

Python 2 versus Python 3	 15
Running some simple Python scripts	 15
Summary	 17

Chapter 2: Understanding Control Flow and Data Types	 19
Data in Python	 19

Numerical types	 21
Operations on numerical types	 25
String manipulation	 28

String functions	 29
String formatting	 32
String templates	 33

Control flow operators	 36
Using functions	 39
Summary	 42

Chapter 3: Working with Data Structures and I/O	 43
Data structures	 43

Lists	 43
Creating lists	 44
List operations	 46

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Dictionaries	 48
Creating dictionaries	 48
Dictionary operations	 49

Sets	 51
Set operations	 52
Frozen sets	 53

Tuples	 54
Input/output	 55

The os.path module	 55
Reading and writing files	 57

Summary	 58
Chapter 4: Understanding Object-oriented Programming
and Threading	 59

Object-oriented programming	 59
Classes in Python	 61

Operation.py	 61
Calculator.py	 62
Using the module	 63
Inheritance	 64

Threading	 66
Locks	 68

Summary	 70
Chapter 5: Packaging Code with setuptools	 71

Using packages in your Python code	 71
Importing modules	 71
Installing modules manually	 72
Installing modules using pip	 74
Installing modules using apt	 75

Packaging your own Python modules	 76
Packaging a library	 77
Adding an entry point	 79

Summary	 81
Chapter 6: Accessing the GPIO Pins	 83

Digital electronics	 84
The GPIO library	 85

Single LED output	 86
PWM output	 87
Multiple outputs	 89
Basic switch	 90
Switch using interrupt	 92

Table of Contents

[iii]

Universal Asynchronous Receiver/Transmitter (UART)	 94
Setting up the serial port	 94
Using pySerial	 96

Additional libraries	 98
Summary	 99

Chapter 7: Using the Camera Module	 101
Setting up the camera module	 101
Installing and testing the Python library	 106
Writing applications for the camera	 107

A time lapse recorder	 107
A point-and-shoot camera	 109
An image effect randomizer	 112

Summary	 114
Chapter 8: Extracting Data from the Internet	 115

Using urllib2 to download data	 115
Parsing JSON APIs	 117
Parsing XML APIs	 119

The DOM method	 120
The SAX method	 123

Parsing a web page using BeautifulSoup	 125
Summary	 130

Chapter 9: Creating Command-line Interfaces	 131
Unit conversion application	 131
Command-line interface	 134
Summary	 139

Chapter 10: Debugging Applications with PDB and Log Files	 141
The Python debugger	 141
Writing log files	 146
Unit testing	 149
Summary	 154

Chapter 11: Designing Your GUI with Qt	 155
Setting up the codebase	 155
Building the UI with Qt Designer	 156
Writing the UI code	 170
Launching the UI	 172
Packaging the code	 173
Summary	 174

Index	 175

Preface

[v]

Preface
The Raspberry Pi is one of the smallest and most affordable single board computers
that has taken over the world of hobby electronics and programming, and the Python
programming language makes this the perfect platform to start coding with.

Getting Started with Python and Raspberry Pi will guide you through the process of
designing, implementing, and debugging your own Python applications to run on
the Raspberry Pi and will help you interact with some of its unique hardware.

What this book covers
Chapter 1, Your First Steps with Python on the Pi, introduces the Python development
tools as you install and set them up on the Raspberry Pi after installing the Raspbian
operating system.

Chapter 2, Understanding Control Flow and Data Types, introduces you to the control
flow and conditional execution operations. Also, the basic data types and the
operations that can be performed on them will be covered in this chapter.

Chapter 3, Working with Data Structures and I/O, gives you an overview of the standard
Python data structures (for example, list, dict, and tuple) and how they can be used
within an application. Also, this chapter will provide an introduction to reading and
writing files on the Raspberry Pi's filesystem, including reading from the sysfs to get
data such as the current temperature of the processor.

Chapter 4, Understanding Object-oriented Programming and Threading, introduces
the concept of object-oriented programming and compares it to the functional
programming that has been done up to this point in this book.

Preface

[vi]

Chapter 5, Packaging Code with setuptools, introduces you to the setup tools in the
Python package, which are used to package Python applications and libraries for
easier installation. This will also include an introduction to the pip utility and PyPi
package repository.

Chapter 6, Accessing the GPIO Pins, gives you an overview of the Python library for
accessing the GPIO pins on the Raspberry Pi and a brief introduction to some basic
electronics needed for the tutorials in the chapter.

Chapter 7, Using the Camera Module, covers using the picamera Python library to
interact with the camera module, the options that can be configured using the
library, and writing a simple application to record a section of video in several
different modes.

Chapter 8, Extracting Data from the Internet, covers the use of several libraries
(including requests and urllib2) to connect to webservers and request data, and
will include obtaining weather forecasts from an online API. Also, you will be
introduced to several third-party libraries that access data from specific sources.

Chapter 9, Creating Command-line Interfaces, covers interaction with applications via
the command line using the argparse Python module.

Chapter 10, Debugging Applications with PDB and Log Files, introduces you to the PDB
(Python debugger) tool, discusses how it can be used to diagnose and fix issues in
Python programs, and covers how the logging Python module can be used to capture
information from an application to be used later for debugging. This includes a tutorial
in which code with several issues placed into it will be debugged and corrected.

Chapter 11, Designing Your GUI with Qt, provides an introduction to GUI design with
Qt using Qt Designer and the Python Qt package.

What you need for this book
You will need:

•	 A Raspberry Pi
•	 An SD card (4 GB or higher)

Preface

[vii]

Who this book is for
This book is designed for those who are unfamiliar with the art of Python development
and want to get to know their way around the language and the many additional
libraries that allow you to get a full application up and running in no time.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

flan = "495"
flan
type(flan)
flan_i = int(flan)
flan_i
type(flan_i)

Any command-line input or output is written as follows:

sudo python setup.py install

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Next we
will disable the LineEdit widget that will be used for displaying the result of a unit
conversion, this is done by selecting the widget and removing the tick in the enabled
property in the Property Editor as shown in the following screenshot."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

[1]

Your First Steps with
Python on the Pi

In this chapter, we will look at setting up the Raspbian operating system on the
Raspberry Pi and have a quick look at the Python development tools that come
pre-installed on it, along with looking at some basic ways in which we can execute
the Python code.

The only things that are required here are:

•	 A Raspberry Pi
•	 A USB power source capable of delivering at least 1A
•	 USB keyboard
•	 USB mouse
•	 TV with HDMI port
•	 An SD card (or microSD card for the model B+ and Pi 2) of at least

4GB capacity
•	 An SD card reader
•	 A USB hub (if you wish to connect more USB devices that there are ports

on the Raspberry Pi)
•	 Optionally, a WiFi adapter if you want to connect the Pi to your network

wirelessly (the list of supported USB WiFi adapters is available at
elinux.org/RPi_USB_Wi-Fi_Adapters)

http://elinux.org/RPi_USB_Wi-Fi_Adapters

Your First Steps with Python on the Pi

[2]

Installing and setting up Raspbian
The first thing we need to do is head to the Raspberry Pi downloads page at
https://www.raspberrypi.org/downloads/ and download the latest version of
Raspbian. This is a version of the Debian Linux distribution, specifically designed
for the Raspberry Pi.

1.	 On the downloads page select the Download ZIP option under RASPBIAN.

2.	 Once the file has downloaded, extract the Zip archive using the default
tool on your OS. You should now have a single file ending with the file
extension .img.

Writing to the SD card
The next step is to write the just downloaded operating system image to the SD
card so that it can be used with the Pi. The way this is done varies depending on
the operating system you use on your main PC.

Windows
On Windows, we will use a tool called Win32 Disk Imager to write the OS
image to the SD card. This tool can be downloaded from the SourceForge page
at sourceforge.net/projects/win32diskimager.

1.	 Once downloaded and installed, insert your SD card and open Win32 Disk
Imager. You should see a window similar to the following screenshot:

https://www.raspberrypi.org/downloads/
http://sourceforge.net/projects/win32diskimager

Chapter 1

[3]

The important thing to check is that a drive letter appears in the Device
drop down list. If this does not happen then Win32 Disk Imager has failed
to recognize your SD card. In such a case, try it in a different SD card reader.
If it still does not work then it could indicate that the card has failed.

2.	 Next, browse to select the .img file you had previously extracted from
the downloaded Zip archive and click the Write button as shown in the
following screenshot, after first making sure that the correct device is
selected in the Device drop down list:

3.	 You will then see a confirmation dialog similar to the one shown in the next
screenshot, asking you to confirm that the image and device are correct.
Assuming they are, click on Yes.

Your First Steps with Python on the Pi

[4]

4.	 Win32 Disk Imager will now write the image file to the SD card. This can
take a few minutes. Once complete, you will see a confirmation dialog box
as seen in the following screenshot:

You now have Raspbian loaded on the SD card and can now move on to the Boot Pi
for the first time. This will be covered in the following sections.

Linux and Mac
On Linux and Mac, the dd command line utility can be used to write the operating
system image to the SD card.

1.	 First, we need to determine the path to the storage device you want to write
to. On Linux, the easiest way to do this is by using the udev management
tool to monitor the udev logs. This is done by using the following command:
udevadm monitor --udev

2.	 Now insert the SD card and you should see a series of log messages printed
to the console, similar to those shown in the following image. The last few
should contain the paths to the partitions already on the drive (in my case,
/dev/sdb1 and /dev/sdb2; from this we can deduce that the path to the
SD card is /dev/sdb).

Chapter 1

[5]

3.	 Next, we need to ensure that none of the existing partitions are mounted
before we try to write to the SD card. This can be done by running the
following command for every partition discovered using udevadm:
umount PATH

Here PATH is the path to the partition. This should give an output similar
to the following image if the partition was not mounted; otherwise the
command will exit without printing any output:

Your First Steps with Python on the Pi

[6]

4.	 At this point, the SD card is ready to be written to. For this we will use the
following command:

sudo dd if=[path to .img] of=[path to SD]

Here [path to .img] is the path to the .img file extracted from the Zip
archive downloaded earlier and [path to SD] is the path to the SD card
we just discovered.
This process will take some time (up to 20 minutes) and is complete when
the command exits and you see the next shell prompt as shown in the
following screenshot. If the writing fails then an error message will be
printed to the terminal.

Booting the Pi for the first time
Now that you have an SD card with Raspbian installed on it, you are ready to boot
the Pi for the first time and perform the first time configuration steps required to get
the Pi up and running.

Note that to fully setup the Pi, you will need to have a way to connect it to the
internet in order to install and update the software packages. This can either be
wired (using an Ethernet cable) or wireless (using a USB WiFi adapter).

1.	 Firstly, connect the mouse, keyboard, monitor, and either the WiFi adapter
or the Ethernet cable to the Pi. Insert the SD card and connect a USB power
source. You should see the red PWR LED (Light Emitting Diode) light up
and shortly after that, the green ACT LED would start to blink.
Note that the USB power source should be able to supply at least 1.5A to
ensure reliable operation of the Pi. Usually, the USB chargers supplied with
the tablets are a good choice of power supply.

Chapter 1

[7]

2.	 Once the Pi has booted, you will see the configuration utility as shown in the
following screenshot. The first thing we need to do here is to expand the root
partition on the SD card to fill the entire SD card. This ensures that we have the
maximum space available once we start using the Pi. This is done by selecting
the Expand Filesystem option at the top of the list and pressing Enter.

3.	 Once the filesystem has been modified, you will see a message similar to the
one shown next. Press Enter to return to the main menu.

4.	 Next, we will change the password for the default Pi user. This is done
by selecting the second option on the main menu, Change User Password,
and pressing Enter.

Your First Steps with Python on the Pi

[8]

5.	 You will now see a message box similar to the one shown next, with
instructions on entering a new password. Press Enter to continue.

6.	 You will now be required to enter a new password. Press Enter when
finished. Once you have done this, you will be asked to enter the password
again to confirm.

Note that when entering a password you will not see any
characters appear on the screen.

7.	 Now that the password has been changed, we need to set the default boot
action to start LXDE, the desktop manager used on Raspbian. Select Enable
Boot to Desktop/Scratch and press Enter.

Chapter 1

[9]

8.	 Now select the second Desktop option and press Enter.

9.	 You may also wish to change the default locale using the Internationalisation
Options menu option. By default, the Pi is configured for the UK.

10.	 Once you are ready to reboot the Pi to apply all of the new settings. This is
done by selecting the Finish option and pressing Enter.

11.	 You will be asked for a confirmation that you want to reboot. Select Yes and
press Enter.

Your First Steps with Python on the Pi

[10]

12.	 If you are using Ethernet to connect to your network then you can skip
this step. Otherwise, we will now setup the WiFi adapter and connect to
a wireless network.

1.	 Open wpa_gui by choosing the WiFi Configuration utility in the
Preferences submenu from the main menu in Raspbian.

2.	 Click on Scan to search for wireless networks in range. When complete,
you should see a list similar to the one in the following screenshot:

Chapter 1

[11]

3.	 When the scan completes, double click on the WiFi network you wish
to connect to and you will be shown a window similar to the one in the
following image, with some of the details of the network filled in:

4.	 Here all that is usually needed to be done is to enter the WiFi
password in the PSK field and click on Add.

www.allitebooks.com

http://www.allitebooks.org

Your First Steps with Python on the Pi

[12]

5.	 When done, the network should be selected in the Network drop
down box automatically. Now click on Connect to connect to the
network. Assuming all went well, you should see the Status of the
connection show Connected, as shown in this next screenshot:

13.	 Now that we have an internet connection on the Pi, the final setup is to
update the software packages already installed on the Pi. This can be done
by opening a terminal, by clicking on the black monitor in the top left corner
of the screen and typing the following commands:
sudo apt-get update

sudo apt-get upgrade

Each of these commands will take a few minutes to execute. The first updates
the list of the available packages and the second updates each of the installed
packages to the latest version.

Now that we have Raspbian setup on the Pi, we can move on to having a look at
some of the tools we can use to write and execute Python scripts on the Pi.

Chapter 1

[13]

The Python development tools
Now that the Pi is set up and running Raspbian, we can have a look at some of the
tools we will use to develop Python scripts (small text files containing commands)
and applications. Most of the time we will be using either the interactive Python
terminal to execute the code line by line or the python executable to run full scripts
and applications.

We will first look at the interactive terminal. First open a terminal by clicking on
the black monitor icon in the top right corner of the desktop. This will open an
LXTerminal window. In this window, type python and press Enter. This will start
the interactive terminal as shown in the following screenshot:

From here we can type the Python code line by line; each line is executed as soon as
it is typed, making this tool useful for quick testing and debugging (I also find that
it makes a nice command line calculator). To demonstrate this, type in the following
code and press Enter:

print "Hello, world!"

Your First Steps with Python on the Pi

[14]

This will print the test Hello, world! on the line next to where you typed it in,
as shown in the following screenshot:

The python executable can also be used to run the existing Python script files
(which have the .py file extension), which we will look at later in the chapter.

One alternative to the interactive terminal is the IDLE Integrated Development
Environment (IDE) which can be used both as an interactive terminal and a source
file editor, and provides syntax highlighting for the Python files. It can be found by
selecting Python 2 from the Programming submenu of the main menu on Raspbian,
as shown in the following screenshot:

When first opened, it will be in the interactive terminal mode and can be used
in the same way as the terminal ran from the command line, as shown in the
following screenshot:

Chapter 1

[15]

Python 2 versus Python 3
You will notice that there are two versions of Python installed by default on Raspbian:
Python 2.7 and Python 3.1. Whilst the fundamentals of Python programming have
not greatly changed between the two versions, there are notable differences that may
prevent a code that was written for one version from working when executed with the
interpreter for a different version.

For this reason, we will only use Python 2.7 in this book as this has the widest library
support and is still the default Python version on many operating systems.

More information of the differences between Python versions
is available on the Python Wiki at wiki.python.org/moin/
Python2orPython3.

Running some simple Python scripts
Now we will look at writing a Python script in a file and executing it. For this we will
use IDLE as it will provide syntax highlighting on the code. However, any text editor
(for example, LeafPad, GEdit, nano, vim) can be used to write the Python files.

1.	 First open IDLE and select New Window from the File menu, as shown in
the following screenshot. This will open a new text editor window which
will allow you to write and edit the script files.

wiki.python.org/moin/Python2orPython3.
wiki.python.org/moin/Python2orPython3.

Your First Steps with Python on the Pi

[16]

2.	 Now type the following code into the editor. This is a simple script that
imports the time module and prints a string containing the current time
to the terminal.
import time
print "The current time is: " + time.ctime()

Keep in mind that the indentation level in Python is very
important as this defines the scope that a line of code fits
into. This will become clearer later on in the book when
we start writing more complex codes.

3.	 Save the file as time.py in the home directory by selecting Save from the
File menu.
Now that the script is saved, we can execute it using the Python executable
at the command line.

4.	 Open a terminal and enter the following command to execute the
Python script:
python time.py

This will give the following output to the terminal:

One small improvement that could be made to this process is to include a
shebang in the Python script that will tell the shell what to use to execute the
script. This way we do not have to explicitly include the Python command
when we run the script.

5.	 Go back to the Python script in IDLE and add the following line as the very
first line in the file:
#!/usr/bin/env python

6.	 Next, we need to give execute permissions to the file in order to execute it
directly (that is, without calling the Python executable first). This is done
using the following command in the terminal:
chmod a+x time.py

7.	 Now we are able to execute the script using the following command:
./time.py

Chapter 1

[17]

This gives the following output on the terminal:

Summary
In this chapter, we looked at getting the Pi set up and running using the Raspbian
operating system, and went through the Python development tools and the differences
between the Python versions.

We also looked at our first snippets of Python code and the different ways that Python
can be executed.

In the next chapter, we will focus more on the fundamentals of Python programming
when we look at control flow operations, multiple data types, and the operations
they support.

[19]

Understanding Control Flow
and Data Types

Now that we are able to run Python code, we will take a look at some of the ways in
which we can store data and control the flow of execution through the Python code.

In this chapter, we will cover:

•	 The basics of data types in Python
•	 Using the math module for operations on numerical types
•	 Using the tring module for string manipulation

As mentioned earlier, all the code used in this chapter is written for Python 2.7,
and is able to be executed on any Python 2.7 interpreter.

Data in Python
Before jumping to the various data types that are available in Python, it is worth
noting that Python is a strong dynamically typed programming language, which
means both that:

•	 Once a variable (a unit of stored data in a program) has been given a value,
its type is set and will not change until the variable is assigned a value of a
different type (strong)

•	 A variable can hold a value of any type as the type is given by the value,
not the variable itself (dynamic)

Understanding Control Flow and Data Types

[20]

This is best explained with an example that can be executed from the interactive
console, assuming we have a variable representing a string:

flan = "flan"

We can query the value held by the variable and the type using the following
code (note that this will only work on an interactive console as return values are
automatically printed to the terminal):

flan
type(flan)

As the following output shows, the variable is of type str which represents a string
in Python:

We can now reassign the variable to a new numerical value and check the type as
done earlier:

flan = 495
flan
type(flan)

Now when we check the type, we see the type has changed to type int, the type
used to store an integer value.

You can also use the isinstance() function to test if a variable holds a value of a
given type, as demonstrated in the following image:

Chapter 2

[21]

Certain types can be converted by using the type name as a function, as shown in the
following example:

flan = "495"
flan
type(flan)
flan_i = int(flan)
flan_i
type(flan_i)

As the output shows, this converts the original value of the flan variable to an
integer based on the contents of the string:

Numerical types
Python has several different numerical types built in that allow you to represent
integer, floating point, and complex numbers using the following types:

•	 int: The plain integer type, this has at least 32 bits of precision but is
limited by the architecture of the system

•	 long: This behaves in the same way as int but has unlimited precision
•	 float: Floating point numbers
•	 complex: Complex numbers

There are a range of ways to define a numerical value in Python. Typically, this
can be done by typing the standard representation of a number as shown in the
following example:

a = 42
type(a)
b = 0.009
type(b)
c = 10000000000
type(c)

Understanding Control Flow and Data Types

[22]

d = 100L
type(d)

Following is the output of this code:

As the output shows, each numerical value is assigned a different type in Python:

•	 Since the value of a is less than the maximum precision of the system,
int is used

•	 b uses float as its value is a decimal number
•	 c uses long as its value is greater than the maximum precision of the system
•	 Finally, d uses long as adding L to the end of an integer number explicitly

makes it a long type

Since we have mentioned the maximum numerical precision of a particular system,
we will quickly look at how we can actually find out what the value of this is. Python
provides this value in the sys module (which is used to retrieve information about
the host system).

import sys
sys.maxint

This returns the maximum value that can be held as an int, as shown in the
following screenshot; anything larger will use the long type instead:

Chapter 2

[23]

Integer types can also be defined using hexadecimal and binary notation using the
0x and 0b prefixes, as shown in the following example:

e = 0xFF
e
type(e)
f = 0b11111111
f
type(f)

As the following screenshot shows, both numbers evaluate to an integer with the
value 255:

Using this format for integer types will become more useful later when we start
interacting with the GPIO expansion header on the Raspberry Pi.

Floating point and complex numbers also have their own syntax, based on the
standard scientific syntax for their notation.

g = 2.75e-3
g
type(g)
h = (5+3j)
h
type(h)

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Understanding Control Flow and Data Types

[24]

This creates a floating point and complex number respectively, as shown in the
following output:

It is also possible to create numerical types explicitly using the type name as a
function, as shown in the following example. Doing this also allows you to convert
between different numerical types and create numerical types by parsing strings.

a = int(4)
a
type(a)
b = int("4")
b
type(b)
c = long(4)
c
type(c)
d = int(5.9864)
d
type(d)
e = float(9)
e
type(e)
f = complex(3, 8)
f
type(f)
g = int("one")

The output from this previous example is shown in the following screenshot. Note that
for the last variable (g), an exception was raised as there was no way to convert the
string to an int type (we will cover exceptions in more detail later on in the chapter).

Chapter 2

[25]

Operations on numerical types
If you have ever used any other programming language then the numerical
operators you will find in Python will not be greatly different. The main operators
are listed as follows:

•	 x + y: Returns the value of the addition of x and y
•	 x - y: Returns the value of y subtracted from x
•	 x * y: Returns the product of x and y
•	 x / y: Returns the quotient of x and y
•	 x // y: Returns the integer quotient of x and y (integer division)
•	 x % y: Returns the remainder of x // y (modulo)
•	 abs(x): Returns the absolute value of x (that is, removes the negative sign)

Understanding Control Flow and Data Types

[26]

•	 divmod(x, y): Returns tuple containing x // y and x % y (we will look at
the tuple type in more detail in the next chapter)

•	 x ** y or pow(x, y): Returns x to the power y

It is worth noting that with the exception of complex numbers, which do not
work for integer division, module, and the divmod() operations, you can use any
combination of numerical types with these functions.

Following is an example of these operations:

a = 49
b = 5
c = 6.5
d = 3e-9
e = 100L
a + b
a - b
a / b
a // b
a % b
c / d
e / a
div, rem = divmod(a, b)
div
rem

The output of this preceding code is shown next. You may wish to use the type()
functions here to check the return type of each of the operations.

Chapter 2

[27]

One thing to note here is that despite the fact that 49/5 is actually 9.8, when we
execute 49/5 in Python, the result will be 9. Because both operands are of type int
only integer division was performed and hence the return value will effectively
be the floored value (that is, the value with the decimal part subtracted) of the
actual result.

It is also possible to perform certain operations directly on the left hand side value
of the operation. In this case, the value held by the left hand side is modified and
no value is returned. This is supported by the following operations:

•	 +, becomes a += b
•	 -, becomes a -= b
•	 *, becomes a *= b
•	 /, becomes a /= b
•	 //, becomes a //= b
•	 %, becomes a %= b
•	 **, becomes a **= b

The following example demonstrates this format for the operators. Note that here
you need to print out the output in order to see that the value is being changed.

a = 45
b = 5
a += b
a
a -= b
a
a *= b
a
a /= b
a

Understanding Control Flow and Data Types

[28]

The output of this is shown in the following screenshot:

While the standard Python functions provide most numerical
operations that you are likely to need, the SciPy package has a lot
of tools that are better suited to working with large amounts of
numerical data. Refer to www.scipy.org for more details.

String manipulation
The next topic we will look at is string storage and manipulation. As with numerical
types, strings can be assigned using a literal (a value written exactly as it should be
interpreted) as the right hand operand of the assignment operator =. You can also
take a majority of any other type and convert it to a string using the str() function
as shown in the following example:

a = "Hello, world!"
a
type(a)
b = complex(3, 6)
b
type(b)
c = str(b)
c
type(c)

www.scipy.org

Chapter 2

[29]

The output of this is shown in the following screenshot:

String functions
There are a large number of functions for performing manipulation and searching
on a string object in Python. Here we will have a quick look at some of the more
common and useful ones. The full list is available online at docs.python.org/2/
library/stdtypes.html#string-methods.

Following is a list of the most common string manipulation functions and a quick
example of how they are used:

•	 capitalize: This returns a copy of the string with the first character
capitalized and the remaining characters in lower case. For example:
"hello, world".capitalize()

This example would return the string 'Hello, world', as shown in the
following output:

•	 lower: This returns a copy of the string with all the characters converted to
lower case. For example:
"Hello World".lower()

docs.python.org/2/library/stdtypes.html#string-methods.
docs.python.org/2/library/stdtypes.html#string-methods.

Understanding Control Flow and Data Types

[30]

This example would return the string "hello world" as shown in the
following output:

•	 upper: This returns a copy of the string with all the characters converted to
upper case. For example:
"Hello World".upper()

This example would return the string "HELLO WORLD" as shown in the
following output:

•	 find: This returns the first index in the string where a substring is found,
or -1 if the substring is not found. Optionally, limits can also be provided
to specify the search range. For example:
"The quick brown fox".find("brown")
"The quick brown fox".find("green")
"the quick brown fox jumps over the lazy dog".find
("the", 5)

The output of this example is shown in the following screenshot. Note how
the second search failed and returned -1, and the third returned the index
of the second "the" rather than the first as the search only began at the
5th character.

•	 replace: This replaces a given substring with a replacement string, optionally
stopping after a given number of replacements have been done. For example:
"She sells seashells by the seashore".replace("sea",
"ocean")
"She sells seashells by the seashore".replace("sea",
"ocean", 1)

Chapter 2

[31]

As the following screenshot shows, the first example replaces all occurrences
of "sea" with "ocean"; in the second example, only the first occurrence was
changed as a limit of 1 replacement was specified.

•	 strip: This removes excess whitespace characters from the start and end of a
string (leaving whitespace inside the string untouched) and returns the new
string. For example:
" Hello, world ! ".strip()

Here, the string "Hello, world !" is returned as shown in the
following output:

•	 split: This splits a string on a given delimiter up to an optional maximum
number of times returning a list of the new strings. If the delimiter is not
found then a single string will be returned. For example:
"Eggs, Milk, Bread".split(", ")
"Eggs, Milk, Bread".split(", ", 1)
"Eggs, Milk, Bread".split("\t")

As the following screenshot of the output shows, the first example splits each
of the items into its own string, the second stops after it has performed one
split, and the third returns a single string as the delimiter (\t is the escape
sequence for the Tab key) was not found in the string:

www.allitebooks.com

http://www.allitebooks.org

Understanding Control Flow and Data Types

[32]

•	 in: This determines if a string contains a given substring. For example:
"Bread" in "Eggs, Milk, Bread"
"Butter" in "Eggs, Milk, Bread"

Each expression evaluates to a boolean (a value that can either be true or
false), as shown in the following output:

Note that a lot of these functions are called by adding the function to the end of
the string itself. This is because in Python strings are what are known as objects
(collections of data and functions that represent a part of a system). We will see 	
this in more detail later on in the book.

String formatting
Python supports both the conventional style string formatting using the % identifier
syntax (for example, %.5d is an integer with up to 5 leading zeros) which can be
found in a lot of other programming languages, and Python's own (more powerful)
string formatting mini-language.

Here we will only look at the conventional style formatting as it is usually good
enough for the majority of uses and is much simpler to understand. The details
for the Python formatting language can be found online at docs.python.org/2/
library/string.html#string-formatting.

The conventional string formatting is done in Python using the syntax in the
following example:

"%s is %d years old" % ("Alice", 23)

This returns the string "Alice is 23 years old", as shown in the following output:

There are several additional formatting options that can be used here to control how
the string is formatted. The complete documentation can be found online at docs.
python.org/2/library/stdtypes.html#string-formatting-operations.

docs.python.org/2/library/string.html#string-formatting.
docs.python.org/2/library/string.html#string-formatting.
docs.python.org/2/library/stdtypes.html#string-formatting-operations
docs.python.org/2/library/stdtypes.html#string-formatting-operations

Chapter 2

[33]

A format string is made up of several sections as follows:

%[(name)][flags][minimum width][.precision][length]type

•	 name: This allows you to optionally specify the name of the key that is
used to take the value from

•	 flags: This is used to control the type of conversion performed
•	 minimum width: This is used to pad out the value so that the string is a

certain number of characters long
•	 precision: This is used to specify the precision of the numerical types
•	 length: This allows you to modify the length of the numerical types
•	 type: This is the character representing the data type of the parameter

Following is a list of the most common data types:

•	 s: String
•	 i: Integer number
•	 f: Floating point number

String templates
String templates are very similar to string formatting. However, they use
customized $ marked substitutions that rely less on the type of the variable
being used for the substitution.

Templates are available via the Template class in the string module.

The following is a simple example of how templates can be used to format
multiple strings:

from string import Template
hello_template = Template("Hello $name, welcome to Python!")
hello_template.substitue(name="Alice")
hello_template.substitue(name="Marisa")
hello_template.substitue(name="Reimu")

Understanding Control Flow and Data Types

[34]

This example gives the following output on the interactive terminal:

It is worth noting that the type of the parameter passed to the substitute function is
not really that important as it will be converted to a string in order to be substituted
into the template string. The following is an example of this:

from string import Template
t = Template("The number is $number")
t.substitute(number="one")
t.substitute(number=42)
t.substitute(number=100L)
t.substitute(number=4e-3)
t.substitute(number=(3+6j))

In the following screenshot, you will see that the output of each substitution simply
gives whatever the standard string representation of each number is:

So far, we have just been using keyword arguments (by passing an argument to the
substitute function by name) to provide the substitutions to the template. However,
it is also possible to provide a dictionary containing the values (we will be covering
dictionaries in more detail in the next chapter), as in the following example:

from string import Template
t = Template("$person_a says $something to $person_b")

Chapter 2

[35]

info = {"person_a": "Marisa", "something": "hello", "person_b":
"Alice"}
t. substitute(info)

This is equivalent to providing the values as parameters to substitute and will
provide the following output:

One issue with using substitute to perform the replacement is that an exception is
raised if one of the substitution parameters is missing. Depending on the application,
this may or may not be the desired behavior, but for cases where the call should not
fail, there is the safe_substitute function which will never raise an exception.
This is shown with the following example:

from string import Template
t = Template("$person_a says hello to $person_b")
t.substitute(person_a="Mima")
t.safe_substitute(person_a="Mima")

As shown in the following output, the first substitution fails as the person_b
parameter is missing. However, when safe_substitute is used instead, the
substitution completes but skips replacing the template parameter in the template
string with anything.

Understanding Control Flow and Data Types

[36]

Control flow operators
If you have ever used any other programming language, you are probably familiar
with the standard control flow operators if, for, and while, which are all present
in Python and operate in a fairly similar way.

if and while can be used in a similar way as they would usually be with any
Boolean expression, as shown in the following example. Since the interactive
terminal is not fantastic at handling indentation, we will just run these examples
as standard Python scripts.

import random
if random.randint(1, 100) % 2 == 1:
 print "Win!"
else:
 print "Lose!"
times_lost = 0
while random.randint(1, 100) % 2 == 0:
 times_lost += 1
print "Win! (after %d losses)" % (times_lost)

As the following output shows, the execution in the first example is controlled
solely by the random number generated in the if statement. In the second, the
random number generation determines the amount of times a section of code
will be executed whilst the overall control flow stays constant. To see the random
execution of this script you may want to run this multiple times.

You might have seen that in the previous example we also used the else statement
to define what to do in the event that the Boolean expression evaluates to False.
We can extend this by using the elif statement after an if statement to give more
options. This functionality then becomes similar to the switch statements you may
find in the other programming languages (which is not included in Python). The
following example demonstrates the usage of elif:

import random
number = random.randint(0, 3)
if number == 2:
 print "Big Win!"
elif number == 1:

Chapter 2

[37]

 print "Small Win!"
else:
 print "Lose!"

Here you can see that the print statement to be executed is chosen by the value of
the number variable (which can only be between 0 and 2). Again, you may want to
try running this code multiple times to see the random nature of the execution.

The for loops work slightly different in Python as they operate over objects called
iterators and generators. Typically, all data storage containers will be iterable.

people = ["Sakuya", "Youmu", "Reisen"]
for person in people:
 print "Hello %s" % (person)

As shown in the following output, each of the values in the list is used as a value
in the for loop. This makes it very easy to iterate over sets of data regardless of
the data type.

There are also several functions to create numerical ranges to iterate over. These
functions are known as generators. The range() function allows you to use for in a
similar integer indexed way as in the other programming languages, as shown in the
following example:

for i in range(5):
 print i
for i in range(8, 12):
 print i

Understanding Control Flow and Data Types

[38]

As the following output shows, the range function simply generates a list of numbers
over the range supplied in the parameters which can be used to iterate over. This
is equivalent to the standard integer indexed for loop iteration used in many other
programming languages (C, for example).

Python also has the break operator which can be used to exit the current loop when
called within one, as demonstrated in the following example:

for i in range(2):
 for j in range(10):
 print "Starting %d.%d" % (i, j)
 if j > 5:
 break
 print "Finishing %d.%d" % (i, j)

As you can see from the following output, after the second iterator variable (j) reaches
a value greater than 5, control exits the inner loop and continues in the outer loop:

Chapter 2

[39]

The other common operator we can use in loops is continue. This allows us to skip
the remaining sections of the loop and start at the beginning of the loop code with
the next iterator value. This is best demonstrated with the following example:

for i in range(10):
 print "Starting #%d" % (i)
 if i % 2 == 1:
 continue
 print "Finishing #%d" % (i)

Here the second print statement is skipped for every odd number in the range,
as shown in the following output:

Using functions
The final topic we will cover in this chapter is that of separating code into functions,
and how variables can be passed to and returned from them.

We will first start with a simple function that takes no arguments and does not return
a value. The following example shows the basic syntax for a function in Python:

def say_hello():
 print "Hello!"
say_hello()

This example simply prints Hello! to the terminal, as shown in the following output:

Understanding Control Flow and Data Types

[40]

In the next example, we will introduce an argument which will be used in the string.
As the example shows, all that is needed is the argument name unlike the other
programming languages, which require a type.

def say_hello(person_name):
 print "Hello, %s!" % (person_name)
say_hello("Sanae")

If you have a function that only operates on a specific type,
you can still enforce arguments to take a specific type using
the isinstance() function.

Here the string Hello, Sanae! is printed as shown in the following screenshot:

Like many other programming languages, Python allows you to set default values
for arguments. This allows them to be omitted in the function call, as shown in this
next example:

def say_hello(person_name="you"):
 print "Hello, %s!" % (person_name)
say_hello()
say_hello("Komachi")

The following output shows that the first call takes the default value for the person_
name argument and so prints the string Hello, you! In the second call, the value of
the argument is provided in the call, so the printed string is Hello, Komachi!

In this next example, we will use the return statement to return the string from the
out function instead of printing it directly to the terminal. We will then print the
return value of the function calls.

def say_hello(person_name="you"):
 return "Hello, %s!" % (person_name)
print say_hello()
print say_hello("Yuyuko")

Chapter 2

[41]

As the following output shows, this script behaves in the same way as the previous
example, but despite that fact, the structure of the code has changed:

Python has support for positional arguments which essentially means that instead
of naming the arguments to a function, you will have access to a list of all the
arguments (that have not already been named), as shown in the following example:

def say_hello(*args):
 for person in args:
 print "Hello, %s!" % (person)
say_hello()
say_hello("Sanae")
say_hello("Remilia", "Yuuka", "Orin")

Here we are taking args as a list of names passed to the function and iterating over
them, as shown in the following screenshot. The asterix (*) is the syntax that tells
Python that args is the list of the positional arguments. Once inside the function,
args behaves just like a standard list.

Python also supports what are called keyword arguments. These behave in a similar
way as positional arguments, that is you define a single parameter in the function
signature and can pass any number of values to it. However, they also require a name
to be passed to the function when it is called, as shown in the following example:

def say_hello(*args, **kwargs):
 for person in args:
 greeting = kwargs.get("greeting", "Hello")
 print "%s, %s!" % (greeting, person)
say_hello()
say_hello("Tenshi")
say_hello("Eirin", "Keine", greeting="Good morning")

Understanding Control Flow and Data Types

[42]

Here kwargs acts as a dictionary (dict) object and is identified as the keyword
argument by the double asterix (**). When calling the function, keyword arguments
are passed in key=value pairs and since there is no guarantee about what information
will be passed, it is important to do proper checking before accessing a member of the
dictionary (we will cover this in the next chapter).

The output of the preceding example is shown in the following screenshot:

Summary
In this chapter, we looked at the most common data types in Python, took an
overview of their operations, and understood how control flow can be controlled
within a Python script.

In the next chapter, we will look further into the container data types that can be
used to hold multiple pieces of data. We will also take a look at IO and see how
our Python programs can interact with the other data and devices on the system.

[43]

Working with
Data Structures and I/O

In this chapter, we will take a look at:

•	 The various data structures that are included in the standard Python types
•	 How they can be used to manage multiple sets of data in a Python application
•	 Reading and writing files to and from the disk to allow your applications to

save their state or operate over data that already exists in a file on disk

Data structures
Data structures are containers that hold multiple variables, depending on the
particular use case. There are multiple different data structures that can be used
which we will now take a look at.

Lists
Lists are probably the most basic data structure; it is simply a list of variables that are
numerically indexed by their position in the list.

Lists are most easily compared to array types that can be found in the other
programming languages. However, they have the following properties that
should be noted:

•	 Zero indexed: The numerical indices of lists start from 0 (as per the majority
of other programming languages) rather than 1.

•	 Dynamically sized: Lists do not have a fixed size so they can grow to hold
any number of elements.

Working with Data structures and I/O

[44]

•	 Type agnostic: Lists do not care about the type of the value that is stored
within them (as the type is defined by the instance rather than the container).
This means that there is no requirement for the values held in a list to be of
the same type.

Creating lists
Lists can be created in multiple ways, the simplest of which is to explicitly list all of
its elements, as shown in the following example:

l = ["apples", "milk", "bread", "eggs"]
print len(l)
print l

Here we are creating a list l containing four strings, and outputting the number
of elements and the string representation of the entire list using the str function.
The output of this can be seen in the following screenshot:

Another way is to create an empty list and add items to it one by one. This is
typically the way that items would be added if done based on execution of the
program. A simple example of this is shown as follows:

breakfast = "french_toast"
l = []
if "toast" in breakfast:
 l.append("bread")
if breakfast == "french_toast":
 l.append("eggs")
elif breakfast == " cereal":
 l.append("milk")
 l.append("cereal")
print l

Here you can see that the elements in the list are determined programmatically by
the value of the breakfast variable. As it is, this will create the list shown next but
try changing breakfast to either "toast" or "cereal" to see the list output change.

Chapter 3

[45]

Another way to create a list is to use a generator. This is a piece of syntax that
operates over sequence types (which include str, unicode, list, tuple, buffer,
and xrange) and allows a simple way to either modify the elements of a sequence
or include or exclude them based on a condition (or a combination of both).

The following example does exactly the same as the previous example, except that it
chooses the ingredients for the breakfast from a list of all the ingredients, based on
what is needed for the given breakfast (determined by the needed_for function):

breakfast = "french_toast"
def needed_for(meal, item):
 if meal == "french_toast":
 return item in ["bread", "eggs"]
 if meal == "toast":
 return item in ["bread"]
 if meal == "cereal":
 return item in ["milk", "cereal"]
all_items = ["apples", "onions", "cereal", "milk", "bread", "bacon",
"eggs"]
l = [item for item in all_items if needed_for(breakfast, item)]
print l

As the following output shows, this works in the same way as the previous
list example:

The following is an example of both modifying the values of a sequence (in this case
a str) and conditionally excluding them.

It is an implementation of the Caesar cipher (https://en.wikipedia.org/
wiki/Caesar_cipher), which is one of the simplest encryption algorithms that
just replaces a letter with the one n places to the right of it, where n becomes the
encryption key.

import string
def caesar(letter, shift):
 letter = letter.upper()
 plain_idx = string.ascii_uppercase.index(letter)
 cipher_idx = (plain_idx + shift) % len(string.ascii_uppercase):
 cipher_letter = string.ascii_uppercase[cipher_idx]
 return cipher_letter
plain_text = "Hello, world!"

https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher

Working with Data structures and I/O

[46]

cipher_shift = 4
cipher = [caesar(char, cipher_shift) for char in plain_text if
char in string.ascii_letters]
print "".join(cipher)

The preceding code gives the following output. If you replace plain_text with this
output and negate the cipher_shift value, then you will be able to decrypt the
message back to HelloWorld, as shown in the following screenshot:

List operations
We will now have a quick look at some of the operations that can be done on lists.
For this, we will use the following two lists:

items = ["milk", "bread", "eggs", "cheese", "crackers"]
more_items = ["honey", "jam", "bread"]

Complete code for this example is provided in the
Lists_Operations.py file supplied with this chapter.

•	 Iteration
for i in more_items:
 print i

Iteration is used to perform an operation (or a set of operations) using each
value in the list.

•	 String representation
print str(items)

The str function is used to represent the list as a string. Typically, this is only
used for logging and debugging.

•	 Size
print len(items)

The len function returns the number of items in the list.

Chapter 3

[47]

•	 Append full list
items.extend(more_items)
print items

The extend function allows you to append all the items from a second list to
an existing list.

•	 Get item
print items[2]
print items[-3]

Items can be retrieved from the list, given their index. A negative index is
used to specify an index starting from the back of the list.

•	 Slicing
print items[1:3]
print items[::2]

Slicing is used to generate a new list that is a subset of the existing one.
The syntax is [min:max:step], where min and max define a range in
the list and step defines the step between the indices in the range.

•	 Existence test
print "milk" in items

It tests to see if a given value is present in the list.

•	 Insertion
items.append("tea")
print items

The append function adds a new value to the list.

•	 Removal
items.remove("honey")
print items

The remove function removes an existing value from the list. If the value is
not in the list then an exception will be raised.

•	 Sort
items.sort()
print items

The sort function is used to sort a list using the natural ordering of the values
it contains (that is, using the greater than and less than comparisons).

Working with Data structures and I/O

[48]

The output from the Lists_Operations.py script which runs all of these examples
is shown in the following screenshot:

Dictionaries
Dictionaries in Python represent a many to one mapping between values. Like lists,
they can contain any hashable type (for example, str, int) as the key and any type
as the value, and they do not have a fixed size.

They are commonly used to represent data where the fields are not typically fixed.
For example, when parsing data in the JavaScript Object Notation (JSON) format,
a tree of dictionaries is the most logical data container as it is a direct representation
of the original data.

Creating dictionaries
Like lists, the contents of a dictionary can be given when creating it, as shown in the
following example. Here the keys and values are separated by a colon (:) and each
field by a comma (,).

d = {"name": "Keine", "Occupation": "Teacher"}
print len(d)
print d.keys()
print d

As shown in the following output, the len function returns the number of set
fields in the dictionary. You will also notice the keys function which returns a
list containing all the keys in the dictionary.

Chapter 3

[49]

Dictionaries also support setting the values of any key (or inserting new keys) using
the syntax demonstrated in the following example:

d = dict()
d["name"] = "Keine"
d["occupation"] = "Teacher"
print d
print d["name"]

As the following output shows, this syntax can also be used to retrieve the value of
any existing key in the dictionary:

Dictionary operations
We will now have a quick look at some of the operations that can be done on
dictionaries. For this, we will use the following two sample dictionaries:

dict_a = {"eggs": 1.50, "milk": 1.2, "bacon": 2.99}
dict_b = {"bread": 2.20, "jam": 4.87}
dict_c = {}

The complete code for this example is provided in the
DIctionary_Operations.py file supplied with this chapter.

•	 Number of keys:
print len(dict_a)

This returns the number of key/value pairs in the dictionary.

•	 Iteration:
for key, value in dict_b.iteritems():
 print "%s -> %f" % (key, value)

This iterates over the key/value pairs in the dictionary.

Working with Data structures and I/O

[50]

•	 Set key/value:
dict_c["honey"] = 5.32
print dict_c

This sets a key to a given value, inserting the key if it does not already exist.

•	 Get value:
print dict_a["bacon"]

This returns the value associated with a given key. If the key does not exist 	
then an exception will be raised.

•	 Get value using a default value:
print dict_b.get("bacon", 6.0)

This returns the value associated with a given key. If the key does not exist
then the default value will be returned (6.0 in this case).

•	 Remove a key/value pair:
del dict_a["bacon"]
print dict_a

This removes a key/value pair from the dictionary.

•	 Test if a key is in a dictionary:
print "bacon" in dict_a

This tests to see if a given key is present in the dictionary.

•	 List keys and values:
print dict_a.items()
print dict_a.keys()
print dict_a.values()

This returns a list of key value pairs as tuples, a list of keys, and a list 	
of values.

•	 Update dictionary from another:
dict_c.update(dict_b)
print dict_c

This copies the key/value pairs from dict_b to dict_c, overwriting the
existing keys where necessary.

Chapter 3

[51]

The output from the Dictionary_Operations.py script which runs all of these
examples is shown in the following screenshot:

Sets
The set type in Python represents logical sets of values and as such supports the
entire standard set logic and arithmetic operations.

The following example shows how sets can be created. The two main options for
this are either creating an empty set as in the first example, or creating a set using
the elements from an iterable storage type (such as list).

empty_set = set()
print len(empty_set)
print empty_set
values = range(0, 10, 2)
value_set = set(values)
print len(value_set)
print value_set

This first creates an empty set, then creates a set using the values generated by the
range function and returns the contents of each as shown in the following screenshot:

Working with Data structures and I/O

[52]

Set operations
We will now take a look at the operations that can be performed on sets. Most of
these are just what you would expect following set algebra.

In this next example, we will use the following sample sets:

set_a = set(range(0, 10, 2))
set_b = set(range(5, 10))
set_c = set(range(5, 15))

The complete code for this example is provided in the
Sets_Operations.py file supplied with this chapter.

•	 Number of members:
print len(set_a)

This returns the number of members in a set.

•	 Membership test:
print 6 in set_a

This tests to see if a given value is a member of a set.

•	 Disjoint test:
print set_b.isdisjoint(set_a)

This tests to see if two sets are disjoint, that is, if the two sets have no
common members.

•	 Subset and superset test:
print set_b <= set_c
print set_c >= set_b

This tests if a set is a subset or superset of another set. Here the first line tests
if set_b is a subset of set_c and the second line tests if set_c is a superset
of set_b.

•	 Union:
print set_a | set_b

It returns the union of two sets, that is, a set containing all the members of
both operand sets.

Chapter 3

[53]

•	 Intersection:
print set_a & set_b

This returns the intersection of two sets, that is, the common members of
both the sets.

•	 Difference:
print set_a - set_b

This returns a set containing members of the first set that are not in the second.

•	 Symmetric Difference:
print set_a ^ set_b

This returns the difference of both the sets, that is, the members that only
appear in one of the two sets.

The output from the Sets_Operations.py script which runs all of these examples is
shown in the following screenshot:

Frozen sets
There is also a frozenset type which behaves in the same way as a set, except
that it is immutable, meaning that once it is created the value cannot be changed.
This is shown in the following example where an attempt to add a value to
frozenset is made:

values = range(0, 10, 2)
value_set = frozenset(values)
print value_set
value_set.add(20)

Working with Data structures and I/O

[54]

As shown in the following screenshot, the final line raises an exception as the add
operation is not supported for the frozenset type:

Tuples
Tuples are very simple data structures. They are essentially lists that once created
cannot be modified and do not have as wide of a selection of operations. They are
commonly used for returning more than one value from a function.

A simple example of their usage is shown as follows:

t = ("Hello", 42, 42, "#")
for i in t:
 print i
print str(t)
print len(t)
print t[0]
print t[-2]
print t[1:3]
print t.count(42)
print t.index("#")

This shows the range of operations supported by tuples. This is essentially
the standard data structure operators including len, iteration, and index access
using []. The output of this is shown in the following screenshot:

Chapter 3

[55]

Input/output
We will now take a look at some of the ways we can access the files and directories
on the filesystem and create, modify, and read the files. Here we will look at using
Python's file objects which are documented in full at https://docs.python.org/2/
library/stdtypes.html#bltin-file-objects.

While this will suffice for simple files, there is a good selection of free libraries
available online that take a lot of work out of creating and parsing the more
complex files such as XML, JSON, and MIDI.

The os.path module
The os.path module contains various functions for performing manipulation
of path names specific to the host operating system. This goes hand in hand with
the file objects for accessing the files and directories on the filesystem, and helps
to ensure that code can be used on any platform by handing all of the platform
dependent and specific tasks for you (for example, the differences in file paths
on Windows and Linux).

The following example demonstrates the most commonly used functions from
this module. However, we first need to setup some paths to be used with the
test script and create a sample file using the following code (where ~ denotes
the home directory):

import os.path
homedir = os.path.expanduser("~")
filename_in_homedir = os.path.expanduser("~/SampleFile.txt")
with open(filename_in_homedir, "w") as f:
 f.write("test\n")

The complete code for this example is provided in
the os_path.py file supplied with this chapter.

The following are the most common and useful functions from os.path:

•	 abspath

print os.path.abspath("SampleFile.txt")

This returns an absolute path given a relative path. In this case, the absolute
path will be for a file named SampleFile.txt in whatever directory the
script was executed from.

•	 basename

print os.path.basename(filename_in_homedir)

https://docs.python.org/2/library/stdtypes.html#bltin-file-objects.
https://docs.python.org/2/library/stdtypes.html#bltin-file-objects.

Working with Data structures and I/O

[56]

This returns the basename of the file that the path points to. The base name is
the filename with the extension.

•	 exists

print os.path.exists(filename_in_homedir)

This returns a Boolean indicating if the path exists on the file system.
This could mean the path is either a file or directory of symbolic link.

•	 getsize

print os.path.getsize(filename_in_homedir)

This returns the size in bytes of a file or directory.

•	 isfile

print os.path.isfile(filename_in_homedir)

This returns a Boolean indicating whether the path points to an existing file.

•	 isdir

print os.path.isdir(homedir)

This returns a Boolean indicating whether the path points to an
existing directory.

•	 islink

print os.path.islink(homedir)

This returns a Boolean indicating whether the path points to an existing
symbolic link.

•	 expanduser

print os.path.expanduser("~/SampleFile.txt")

This expands markers at the start of the path that denote the user's home
directory, namely ~ and ~user.

•	 join

print os.path.join(homedir, "SampleFile.txt")

This joins two paths together, automatically inserting slashes as required.

•	 split

print os.path.split(filename_in_homedir)

Chapter 3

[57]

This splits a path into the path and basename.

•	 splitext

print os.path.splitext(filename_in_homedir)

This splits a path into the path with filename and the file extension.

The output from the os_path.py script which runs all of these examples is shown in
the following screenshot:

Reading and writing files
Now that we can query the filesystem and manipulate the file paths using the
os.path module, we can look at accessing and writing files. In the following
example, we will create a sample file in the home directory, write some test
to it, and read it back.

The following first block of code simply imports the os.path module, and defines
the file we are writing to and the text we are going to write:

import os.path
filename = os.path.expanduser("~/SampleFile.txt")
text = "The quick, brown fox jumps, over the, lazy dog"

Now we will open the file for writing using the open function. Here the first
parameter is the filename and the second is the mode in which it will be opened.
The possible options here are:

•	 r: Reading only (the default option when the second parameter is omitted)
•	 w: Writing (any file by the same name will be overwritten)
•	 a: Appending (appending to the existing file of the same name, otherwise

create a new file)
•	 r+: Reading and writing

Working with Data structures and I/O

[58]

We then use the writelines function to write a list of strings to the file, as shown next:

with open(filename, "a") as f:
 lines = [l + "\n" for l in text.split(",")]
 f.writelines(lines)

Next, we will reopen the file in read only mode and print out its contents. Here we
are using the enumerate function which adds a numerical index to an iterator:

with open(filename) as f:
 for idx, line in enumerate(f):
 print "%.2d: %s" % (idx, line.strip())

This results in the contents of the file being printed line by line alongside the line
number, as shown in the following screenshot. Note that since we open the file in
the append mode, running the script multiple times will add more duplicate lines
to the file.

Summary
In this chapter, we looked at storing data sets in Python using the container types
and how we can perform operations over an entire data set using the container
operations as well as accessing files saved on the disk as plain text.

In the next chapter, we will learn about the Object Oriented Programming (OOP)
paradigm, how this differs from the functional programming style we have been
doing so far, and in what cases it should be used.

[59]

Understanding
Object-oriented Programming

and Threading
In this chapter, we will look at how object-oriented programming (OOP) can
be done using Python, how code can be arranged into modules, and how these
modules can be used in scripts.

We will also have a quick look at how multithreading can be used within a Python
script in order to perform multiple operations simultaneously within the program.

In this chapter, we will cover the following topics:

•	 Object-oriented programming
•	 Classes in Python
•	 Threading

Object-oriented programming
Object-oriented programming is a paradigm in which the program is structured
around several objects rather than actions or functionality. The main difference is
that in the procedural programming type that we have been using so far in the book,
the focus is on the processing that is being carried out, whereas in object-oriented
programming, the focus is on the data being processed.

To demonstrate this, we will write a simple module that provides an interface similar
to a conventional calculator, that is, input in the form of a series of numerical values
and operations.

Understanding Object-oriented Programming and Threading

[60]

The structure for this module is shown in the following Unified Modeling Language
(UML) (www.uml.org) diagram:

Here each block represents a class, with the second square representing the member
variables of the class and the bottom representing the functions.

An arrow indicates that a class inherits from the class it points to. This essentially
means that the class inherits all of the parent class's functionality.

Before we start implementing this, it is important to get an idea of the file structure
of the module. The structure required is shown in the following screenshot:

This preceding screenshot was created with the tree utility, which can be installed
using the following:

sudo apt-get install tree

Note that __init__.py is just an empty file; it is, however, required
to signify that the calculator directory is a Python module.

www.uml.org

Chapter 4

[61]

Classes in Python
We will now look at how we create classes in Python in our calculator module.

Operation.py
First, we will create the Operation class. It is used to represent a single operation
that can be performed by the Calculator class. Here, we are inheriting from the
object class, which is the base class from which all the objects inherit in Python.

class Operation(object):
 _operation = None

The __init__ function is the constructor of the class. It is called when a new instance
of a class is created. Here, we will use it to validate the function that is provided by a
parameter and store it in the class.

 def __init__(self, name):
 if name not in ["add", "subtract", "multiply", "divide"]:
 raise ValueError("%s is not a valid operation" %
(name))
 self._operation = name

Methods in the Python classes are required to take a parameter typically named
self. This parameter is the instance of the class that the function was called on,
and it must be used when calling the other class functions or accessing the member
variables. Here, we use this when accessing the _operation member variable:

 def evaluate(self, a, b):
 if self._operation == "add":
 return a + b
 elif self._operation == "subtract":
 return a - b
 elif self._operation == "multiply":
 return a * b
 elif self._operation == "divide":
 return a / b

Understanding Object-oriented Programming and Threading

[62]

Calculator.py
Now, we will create the Calculator class, which will contain the actual logic for
calling the operations on the values provided.

As we will be using the Operation class, we first need to import it, as shown next:

from Operation import Operation

class Calculator(object):
 _input_list = list()
 _result = 0.0

The following two functions are used to add values and operations to the list of
inputs to the calculator (stored in the _input_list member variable):

 def enter_value(self, value):
 if len(self._input_list) > 0 and not
isinstance(self._input_list[-1], Operation):
 raise RuntimeError("Must enter an operation next")
 self._input_list.append(float(value))

 def enter_operation(self, operation_name):
 if len(self._input_list) == 0 or
isinstance(self._input_list[-1], Operation):
 raise RuntimeError("Must enter a value next")
 self._input_list.append(Operation(operation_name))

The evaluate function is used to iterate through _input_list and perform
operations on the values using the Operation class.

 def evaluate(self):
 self._result = self._input_list[0]
 for idx in range(1, len(self._input_list), 2):
 operation = self._input_list[idx]
 next_value = self._input_list[idx + 1]
 self._result = operation.evaluate(self._result,
next_value)
 return self._result

Since the _result member variable is marked to be private to the class (that is,
it should only be accessed and written to by the class and its subclasses), we will
add a function to return its value.

 def get_result(self):
 return self._result

Chapter 4

[63]

Unlike other languages (such as C++), Python does not enforce
privacy on the member variables and the class functions. However,
the code conventions state that any function or variable starting with
an underscore (_) is to be treated as private, and any modifications
to them may cause unexpected behavior from the class.

The all_clear function is used to simply reset the result and the inputs to
the calculator.

 def all_clear(self):
 self._input_list = list()
 self._result = 0.0

Using the module
Now that the files for the module have been created, we can start writing a simple
script that will make use of the module. First, we must import the class from the
module, as shown next:

from calculator.Calculator import Calculator

Now we can use the Calculator class that we imported to perform some test
operations, as follows:

c = Calculator()
c.enter_value(1)
c.enter_operation("add")
c.enter_value(9)
c.enter_operation("multiply")
c.enter_value(5)
c.enter_operation("divide")
c.enter_value(20)
print c.evaluate()

When executed, the script output the result of the calculation, as shown in the
following screenshot:

The complete code for this example is provided in
the do_calculation.py file and the calculator
directory supplied with this chapter.

Understanding Object-oriented Programming and Threading

[64]

Inheritance
To better demonstrate the possible uses for inheritance, we will create a simple
example showing how it can help to remove code duplication in a larger application.
This sample script is a simple calculator that is designed for expanding the number
of operations it can support; the structure of which is shown in the following UML
diagram:

First, we will create the Function class that provides an interface for any subclass that
inherits from it. Since Python can not explicitly state that a function must be overridden
in a subclass, we will have the evaluate function raise NotImplementedError if it is
called on a class that did not override it. This is used to indicate to the code that called
the function that an error has occurred, and is done using the raise function.

class Function(object):
 def evaluate(self):
 raise NotImplementedError();

Next, we will create the BinaryOperation abstract class that will provide the
functionality for setting and holding the operands for the operation.

class BinaryOperation(object):
 _left_operand = 0.0
 _right_operand = 0.0

 def set_left_operand(self, value):
 if not isinstance(value, float):
 raise ValueError("Value must be a float")
 self._left_operand = value

Chapter 4

[65]

 def set_right_operand(self, value):
 if not isinstance(value, float):
 raise ValueError("Value must be a float")
 self._right_operand = value

Next, we will create two operations that inherit from both Function and
BinaryOperation. This will ensure that the new classes will have the evaluate
function (if not, an informative error message will be generated) and will have access
to the left and right operand member variables defined in the BinaryOperation class.

class Addition(Function, BinaryOperation):
 def evaluate(self):
 return self._left_operand + self._right_operand

class Subtraction(Function, BinaryOperation):
 def evaluate(self):
 return self._left_operand - self._right_operand

Next, we will write a simple script that demonstrates the usage of the two new classes.

add = Addition()
add.set_left_operand(5.0)
add.set_right_operand(10.0)
print add.evaluate()

sub = Subtraction()
sub.set_left_operand(50.0)
sub.set_right_operand(23.0)
print sub.evaluate()

When executed, this script should print the output of these two calculations,
as shown in the following screenshot:

The complete code for this example is provided in the
Inheritance.py file supplied with this chapter.

Understanding Object-oriented Programming and Threading

[66]

Threading
Multithreading allows an application to have multiple flows of control that are
executed simultaneously. On the Raspberry Pi, this can be useful in applications
that need to monitor the General Purpose Input and Output (GPIO) pins to react
to the changes in switch and sensor states.

Multithreading is a large subject that can take a long time to cover completely, hence
only a couple of the Python classes in the threading module will be covered here.
However, the full documentation for this module is available at https://docs.
python.org/2/library/threading.html.

First, we will import the required modules for the functionality that we will be using
and will set up the default logger so that we can see the process ID when a log is
written to it. You don't need to worry about this now, as we will be going over the
logging framework in Python in a later chapter.

import logging
import threading
import time
logging.basicConfig(level=logging.INFO,
 format="%(asctime)s (T:%(thread)d):-
%(message)s")

Next, we will create a new class that inherits from the Thread class. This includes all
the functionality to have the processing in the run function be performed on a new
thread. In the constructor, we will also take the arguments passed to the class and
store them to be used when the thread runs.

class MessagePrinter(threading.Thread):
 def __init__(self, *args, **kwargs):
 threading.Thread.__init__(self)
 self._args = args
 self._kwargs = kwargs
 self._lock = kwargs.get("lock", None)
 def run(self):
 for message in self._args:
 logging.info(message)
 time.sleep(self._kwargs.get("delay", 1.0))

https://docs.python.org/2/library/threading.html.
https://docs.python.org/2/library/threading.html.

Chapter 4

[67]

Here, the run function will log each of the messages passed to the class as a positional
argument, with a delay between them defined by the delay keyword argument.

Next, we will create two instances of the MessagePrinter class with different
messages and delays, as can be seen next:

mp1 = MessagePrinter("Hello", "Good day!")
mp2 = MessagePrinter("A", "B", "C", delay=3)

To actually execute the run function, we call start on the class which will call the
run function in a new child thread.

mp1.start()
mp2.start()

Since we now have two threads that will be running for a longer duration than
the main thread (that is, the one that runs the entire script), we need to join the
two child threads so that the main thread will have to wait for both of them to exit
before it can exit.

mp1.join()
mp2.join()

When the script is run, you should see something similar to the following
output. Note that the process IDs match the messages logged by each of the
MessagePrinter classes.

The complete code for this example is provided in the
Threading.py file supplied with this chapter.

Understanding Object-oriented Programming and Threading

[68]

Locks
An important concept in multithreading is the idea of a lock. It is used to prevent
multiple threads from modifying the same data simultaneously, which can otherwise
lead to data corruption.

A lock is said to have an owner (typically, a thread), and while a thread has
ownership of a lock, it is allowed to write to data that is shared between multiple
threads. When another thread requires a write access to some data, it must request
ownership of the lock. If the lock has no owner, then the requesting thread is granted
the ownership immediately; otherwise, the requesting thread must wait for the
current owner to release its ownership on the lock before it can take ownership of it.

Whilst locks are typically used to protect data, they can also be used with input/
output devices, including the standard output stream used by the print function, as
shown in the following example (which is largely the same as the preceding example
but does not use the logging framework):

import logging
import threading
import time
class MessagePrinter(threading.Thread):
 def __init__(self, *args, **kwargs):
 threading.Thread.__init__(self)
 self._args = args
 self._kwargs = kwargs
 self._lock = kwargs.get("lock", None)
 def run(self):
 for message in self._args:
 if self._lock:
 self._lock.acquire()
 print message
 if self._lock:
 self._lock.release()
 time.sleep(self._kwargs.get("delay", 1.0))
lock = None
mp1 = MessagePrinter("Hello", "Good day!", lock=lock)
mp2 = MessagePrinter("A", "B", "C", delay=3, lock=lock)
mp1.start()
mp2.start()
mp1.join()
mp2.join()

Chapter 4

[69]

Since we have the lock variable set to None in the preceding example, the script
will make calls to the print function without any regard for other threads that may
also be using the print function. As can be seen in the following output, this causes
minor defects in the output that is printed to the terminal, since the first message on
both the threads was printed simultaneously:

If instead, we replace the lock variable with an instance of a Lock object, then
MessagePrinter will only make calls to the print function when it has ownership
of the lock.

lock = threading.Lock()

Now that all the MessagePrinter instances share the same lock object, they will
never print messages simultaneously. This can be seen in the following output which
is correctly formatted:

The complete code for this example is provided in the
Threading_Locks.py file supplied with this chapter.

Understanding Object-oriented Programming and Threading

[70]

Summary
In this chapter, we looked at the object-oriented programming paradigm and how it
can benefit applications, and the way that classes can be combined into modules and
used in other scripts.

We also had a brief introduction to multithreading and the best practices for ensuring
data validity between the threads that access shared data.

In the next chapter, we will have a look at the setuptools utility and see how it can
be used to package the Python code for distribution to multiple systems, and how it
can help manage dependencies on the other libraries.

[71]

Packaging Code
with setuptools

In this chapter, we will look at the ways we can use third-party libraries in
our Python code and how we can package our own Python modules ready for
distribution. The distribution can be done in a variety of ways including via the
popular pip repository, which we will take a quick look at.

The following topics will be covered in this chapter:

•	 Using packages in your Python code
•	 Packaging your own Python modules

Using packages in your Python code
We will first have a look at the ways in which third party code and libraries can be
downloaded, installed, and included in the Python scripts and application we write.

Importing modules
As we have already seen in several of the examples used so far, Python libraries
(modules) are used in code by importing them using the import statement.
However, so far, we have only been importing the entire modules. For example,
import threading imports the entire threading module and to use, say, the
Thread class, you would have to specify it as threading.Thread.

Packaging Code with setuptools

[72]

Python also allows you to import single classes, and even functions, using a slightly
modified syntax, as shown next:

from threading import Thread
from time import time

This preceding code imports just the Thread class and the time function from the
threading and time modules respectively. Now when you want to use either within
the rest of the file, you would only need to specify either Thread or time, rather than
threading.Thread or time.time.

It is also possible to specify multiple items to be imported from a single module
using the following syntax. Note that the brackets are not required in this case.
However, the use of brackets allows the import statement to span multiple lines if
required (this is usually done for clarity if a line should exceed a certain number of
characters, typically 80).

from time import (time, sleep)

Installing modules manually
So far, we have only used packages that are included with Python by default; however,
installing third party packages is a simple process as well.

As an example, we will install and demonstrate the PyDub library, which provides an
interface to allow simple audio modification and processing. This library is hosted on
GitHub (https://github.com/jiaaro/pydub), so we can simply use Git to obtain
a copy of the source code. The process after this remains the same for any packaged
Python source code. Following are the steps to manually install it:

1.	 We will install the git client, download a copy of the source code
to the pydub directory, and change into that directory using the
following commands:
sudo apt-get install git
git clone https://github.com/jiaaro/pydub.git pydub
cd pydub

Git (git-scm.com) is an open source version control system
that is commonly used to manage the open source projects.

2.	 Next, we will use the setup.py script to install the PyDub library using the
following command:
sudo python setup.py install

https://github.com/jiaaro/pydub
git-scm.com

Chapter 5

[73]

This command should give output similar to the following screenshot:

Before we can use the PyDub library, we must also install ffmpec (a media
transcoding library and utility). This can be done using the following command:

sudo apt-get install ffmpeg

Once the library is installed, we can use it in a sample Python script, such as the one
shown next. This does some simple audio synthesis and manipulation using PyDubs
auto segment class and the Pulse generator.

from pydub.generators import Pulse

audio = Pulse(440, duty_cycle=0.6).to_audio_segment() * 10
faded = audio.fade_in(2500).fade_out(5000)
faded.export("test_audio.mp3", format="mp3")

The preceding script will not give any visual output but you will see that there is an
mp3 file that is created by it. This file should contain a tone played for 10 seconds
with a fade in and out, as described in the Python script.

Packaging Code with setuptools

[74]

Installing modules using pip
One easier alternative to installing packages manually is installing them from the
PyPI repository (pypi.python.org) using the pip package manager, which is
already installed on Raspbian.

To demonstrate this, we will install the enum34 package (https://pypi.python.
org/pypi/enum34), which is a version of the enumeration types available in Python
3.4 for lesser Python versions.

Installing a package using pip is done using a single command, as follows:

sudo pip install enum34

This command gives a much more concise output when used to install the packages,
as shown in the following screenshot:

Once the package is installed, we can demonstrate its usage in a sample script,
as follows:

from enum import Enum

class OperatingSystem(Enum):
 Windows = 1
 OSX = 2
 Linux = 3

print OperatingSystem
print dir(OperatingSystem)
print OperatingSystem.Linux
print OperatingSystem.Linux.value

pypi.python.org
https://pypi.python.org/pypi/enum34
https://pypi.python.org/pypi/enum34

Chapter 5

[75]

This preceding script will output several pieces of information about the
enumeration type we just created, as shown in the following screenshot:

Installing modules using apt
A further alternative to the pip package manager is using the operating system's
default package manager; in the case of Raspbian, it is apt.

Typically, you will not find as many packages on these such repositories as
publishing onto them requires developers to maintain their packages on multiple
repositories; if they publish to PyPI, however, they only have to maintain a single
copy of their package.

sudo apt-get install python-numpy

This gives the same output as would typically be expected for any package installed
with the systems default package manager, as shown in the following screenshot:

Packaging Code with setuptools

[76]

We can now import the Numpy library and make use of it in a simple demonstration
script, as shown next:

import numpy

angles_deg = numpy.array(range(0, 360, 15))
angles_rad = numpy.radians(angles_deg)
angles_sine = numpy.sin(angles_rad)

print "DEG\tRAD\t\tSINE"
for deg, rad, sine in zip(angles_deg, angles_rad, angles_sine):
 print "%d\t%f\t%f" % (deg, rad, sine)

This preceding script gives a tabulated set of values, as shown in the
following screenshot:

Packaging your own Python modules
Now that we have seen how the Python packages can be downloaded and installed,
we will look at how they can be created from our own modules. For now, we will
only look at how they are packaged and leave out the process of publishing it to
a repository.

Chapter 5

[77]

Packaging a library
We will first look at how to package a library that can be imported by other Python
scripts and applications.

We will start with a copy of the calculator module that we created in Chapter 3,
Working with Data Structures and I/O.

1.	 First, create a new directory named calcpy and move the calculator
directory inside it. This calcpy directory will be the packaged library.

2.	 Now, create an empty Python file named __init__.py inside the calcpy
directory using the following command. This file will tell Python that the
calcpy directory should be treated as a module.
touch __init__.py

3.	 Next, create another directory called calcpy that contains the calcpy
directory created in the previous step. This directory will be the package
itself.

4.	 Now, create an empty setup.py file within the calcpy directory created
in the previous step. This file will later contain the instructions on how the
library will be installed.

By this point, the directory structure should be the same as what is shown in the
following tree:

Packaging Code with setuptools

[78]

Next, open the setup.py file and add the following code:

from setuptools import setup

setup(
 name="calcpy",
 version="0.0.1",
 description="A basic calculator",
 classifiers=[
 "Natural Language :: English",
 "Programming Language :: Python :: 2.7",
],
 author="Dan Nixon",
 packages=["calcpy", "calcpy.calculator"],
 install_requires=[
 "numpy"
])

In the preceding code, the first line is used to import the setuptools utility which
will be used to install the module when a user runs the setup.py script.

The following lines describe the library or the application that is contained within
the module; some are fairly self explanatory (such as name, version, description,
and author):

•	 classifiers: It is a list of strings that describe the software or the library
that is contained within the package. This list is used to help categorize the
packages on repositories such as PyPI. A full list of the available classifiers
can be found at https://pypi.python.org/pypi?%3Aaction=list_
classifiers.

•	 packages: It is a list of strings that define the Python modules included in
the package. This can be useful to only include the modules that provide
functionality and exclude those that only form part of the development
process (for example, automated tests).

•	 install_requires: It is a list of strings that define any additional packages
that the library requires. These should be the package names as they appear
in PyPI. Note that in this example, Numpy is not actually required by this
library; it is just included as a demonstration.

Once this is done, you can install the package by running the following command:

sudo python setup.py install

https://pypi.python.org/pypi?%3Aaction=list_classifiers
https://pypi.python.org/pypi?%3Aaction=list_classifiers

Chapter 5

[79]

This should give a message similar to the one shown in the following screenshot:

Now, in a new Python shell, you can import the Calculator class using the
following code:

from calcpy.calculator.calculator import Calculator

Adding an entry point
We can also use setuptools to package full application, both command line and
GUI based. We will now have a look at how to modify our existing calcpy package
to include a command line interface that would be installed alongside the package.

First, we need to create a script that will provide the command line interface. In this
case, we will place this script in the calcpy/calcpy directory and save it as cli.py.
The contents of this script are as follows:

from calcpy.calculator.Calculator import Calculator
import sys

def run_cli():
 calc = Calculator()

 for arg in sys.argv[1:]:
 try:
 value = float(arg)
 calc.enter_value(value)
 except ValueError:
 calc.enter_operation(arg)

Packaging Code with setuptools

[80]

 result = calc.evaluate()
 print result

if __name__ == "__main__":
 run_cli()

This is a very simple command line interface that takes the values given to the script
from the command line, attempts to build a calculation with them, and then returns
the evaluated result.

Next, we need to add the entry point in the setup.py script so that the script is
automatically added to the users PATH variable when the package is installed,
which is required for the script to be used from the command line.

This takes the form of the following addition to the call to the setup() function:

entry_points={
 "console_scripts": [
 "calcpy = calcpy.cli:run_cli"
]
},

This addition tells setuptools that there is a console entry point which should be
aliased as calcpy from the command line and will call the run_cli function in the
calcpy/cli.py Python file.

By now, the setup.py script should look something like the following screenshot:

Chapter 5

[81]

The directory structure should also be similar to what it was before but with the
addition of the cli.py script, as shown in the following screenshot:

Now we can rerun the following installation command to install the new version of
the calcpy package:

sudo python setup.py install

This will enable us to use the command line interface to calcpy from the terminal
by calling the calcpy command with several operations and values, as shown in the
following screenshot:

Summary
In this chapter, we first learnt about the most common ways to install third party
libraries and how to then use them in our own Python code. Doing this greatly
broadens the range of functionality that becomes available to your Python applications.

We then looked at ways that we can package our own Python libraries and
application, using the setup tools module ready for distribution to other devices.

In the next chapter, we will start to focus on some of the Raspberry Pi specific side
of Python as we start to use the gpio library to access and control the GPIO header
on the Raspberry Pi.

www.allitebooks.com

http://www.allitebooks.org

[83]

Accessing the GPIO Pins
In this chapter, we will look at the simplest way of interfacing with digital electronics
using the General Purpose Input and Output (GPIO) port on the Raspberry Pi.
To do this, we will be using the RPi.GPIO module, which is installed as standard
on the newer versions of Raspbian.

We will also take a quick look at some of the basics of digital electronics and the
additional methods of communication offered by the Raspberry Pi, including UART.

Note that some of the examples later in the chapter will require some additional
electronic components, all of which can be purchased from standard high street
electronics retailers.

The components required are:

•	 A small breadboard
•	 Some 0.1" male to female jumper wires
•	 A push to make a switch
•	 Some LEDs
•	 The appropriate resistor for the LEDs

The exact value of the resistor can be calculated using an online tool, such as the
one found at ledcalc.com. Here, the supply voltage should be 3.3V, the LED
current should be 20mA, and the number of LEDs should be 1. The voltage drop
will depend on the type of LEDs you use (the site has a reasonable guide based
on the color of the LED).

http://ledcalc.com

Accessing the GPIO Pins

[84]

Digital electronics
Before we start interfacing the Pi to any electronics, we will first take a look at some
of the fundamentals of digital electronics.

Logic in digital electronics is composed of two states: high and low. Typically, low is
represented by the signal being close to the ground (0V) and high is represented by
being close to a reference voltage (usually, the operating voltage of the logic device).
In the case of the Raspberry Pi, it is 3.3V.

Be sure that any device that you connect to the Raspberry Pi
via the GPIO port can operate at 3.3V.

The point at which a signal changes between these two states is known as an edge.
This can either be rising or falling depending on the direction of the state change,
as shown in the following diagram:

Another concept we will see later in this chapter is Pulse Width Modulation (PWM).
This is the concept of simulating an analog signal (a constant signal at a voltage
between the high and the low levels) by creating a digital signal and varying the ratio
between the time the signal is high and the time it is low (known as the duty cycle).

This is demonstrated in the following diagram, where you can see the effects
changing the duty cycles has on a signal, which can then be used to control certain
devices that can also operate on an analog signal. For example, a common use for
PWM is to control the brightness of an LED or other lighting device.

Chapter 6

[85]

Another concept we will touch on later in the chapter is the idea of pull up and
pull down resistors. These are typically high value resistors (10K Ohm is a common
value) used on input pins, that would otherwise be left floating (that is, in a state that
is neither high or low), to define the normal (or inactive) state of the input.

The GPIO library
The RPi.GPIO module provides a simple interface to the basic digital logic functionality
of the GPIO header as well as software synthesized PWM, which allows the Pi to
output an analog like signal.

Before starting to use the GPIO pins, it is important to know what each pin can
do and what it is connected to. The following diagram shows the pinouts for each
version and revision of the Raspberry Pi:

Note that the Raspberry Pi 2 has the same pinout as the Raspberry Pi B+.

Typically, when using the GPIO pins, you should avoid using the GPIOs 14 and 15
as they are by default used for a serial terminal which provides access to the shell
running on the Pi. GPIOs 0, 1, 2, and 3 should also be avoided as they are used for
the I2C interface, which requires a pull-up resistor to be used on the pins that is fitted
by default and can cause issues with some devices.

Accessing the GPIO Pins

[86]

Single LED output
To demonstrate the basic use of the GPIO library, we will create a simple script that
will flash an LED once a second for 10 seconds. This will require us to build a simple
circuit to connect to the GPIO header, as shown in the following diagram:

Note that the polarity of the LED is important as electrical current can only flow
through it in one direction. The longer lead of the LED is the anode, which should
be connected to the resistor, and the shorter lead is the cathode, which should be
connected to the ground pin of the Raspberry Pi.

Next, we will start writing the script to blink the LED. This is to be saved as a file
named basic_output.py. First, we will import the RPi.GPIO module and the
sleep function which will be used later in the code.

import RPi.GPIO as GPIO
from time import sleep

Next, we will set the numbering mode to use the GPIO numbers rather than the
numbers of the pins on the GPIO header.

GPIO.setmode(GPIO.BCM)

The led_gpio variable will hold the GPIO number that the LED will be attached to.

led_gpio = 4

Chapter 6

[87]

Next, we will configure the GPIO pin that the LED is connected to as an output.

GPIO.setup(led_gpio, GPIO.OUT)

Now, we will loop 10 times in order to flash the LED. Note that the iterator variable
is not required here, so is replaced with _.

for _ in range(10):

Here, we are reading the current state of the GPIO pin and then setting it to the
negated value. This effectively toggles the state of the pin.

GPIO.output(led_gpio, not GPIO.input(led_gpio))
sleep(1.0)

Before exiting, the cleanup function should be called to reset the configuration
and the states of all the GPIO pins. It is possible to clean up the individual pins,
however, it is only an issue when running multiple applications that access the
GPIO pins simultaneously.

GPIO.cleanup()

Once the code has been written, the script can be executed using the following
command:

sudo python basic_output.py

The script will not produce any output on the terminal, however, you will see the
LED flash on and off once per second. If not, then ensure that the wiring is correct
and that the LED is inserted in the correct polarity.

Scripts that use the gpio module must be executed using
sudo as access to the GPIO port requires root privileges.

PWM output
We can also control the brightness of the LED using PWM with no changes to
the circuit used previously. This allows us to set the LED brightness to any level
between off and fully on.

It is worth noting that the brightness of the LED does not change linearly with
the duty cycle used to dim it. However, for the examples used next, this will
not be an issue.

Accessing the GPIO Pins

[88]

We start the Python file in the same way as the previous example. This time we will
save the file as pwm_output.py.

import RPi.GPIO as GPIO
from time import sleep

Next, we will define a function that will fade a PWM output from a given duty cycle
to another, with a given number of steps between the values.

def do_fade(pwm, start, end, step=2):
 if start > end:
 step *= -1
 end -= 1
 else:
 end += 1
 for duty in range(start, end, step):
 pwm.ChangeDutyCycle(duty)
 sleep(0.1)

Now, we will configure the GPIO numbering and the output pin in the same way as
was done in the previous example.

GPIO.setmode(GPIO.BCM)
led_gpio = 4
GPIO.setup(led_gpio, GPIO.OUT)

Next, we will create a PWM object which manages the output of the PWM signal.
Here, we are creating the PWM object on the led_gpio pin at an output frequency
of 50Hz. The second line starts the PWM signal and sets the initial duty cycle.

pwm = GPIO.PWM(led_gpio, 50)
pwm.start(0)

Now, we will fade the LED on and off twice.

for _ in range(2):
 do_fade(pwm, 0, 100)
 do_fade(pwm, 100, 0)

Finally, clean up the GPIO configuration.

GPIO.cleanup()

As with the previous script, this can be executed with the following command:

sudo python pwm_output.py

This script does not produce any output on the terminal but you should see the LED
slowly fade from off to fully on twice.

Chapter 6

[89]

Multiple outputs
The GPIO library also provides some nice functionality for modifying multiple
GPIO pins simultaneously. This can help keep the code clean when working
with multiple devices or devices that require multiple GPIO pins.

To demonstrate this, we will add an additional LED to the current circuit, as shown
in the following diagram:

We start the Python file in the usual way. This time we will save the file as
multiple_output.py.

import RPi.GPIO as GPIO
from time import sleep
GPIO.setmode(GPIO.BCM)

Next, we will define a list of the GPIO pins that will be used as outputs for LEDs
and set each of them up as an output. Here, we are also setting the initial state of
each output, where every other LED is set low.

led_gpios = [4, 17]
for i, gpio in enumerate(led_gpios):
 state = i % 2 == 0
 GPIO.setup(gpio, GPIO.OUT, initial=state)

Accessing the GPIO Pins

[90]

Next, we will loop 10 times and toggle the state of each GPIO pin. Here, we are passing
list for both the GPIO number and the output states in the call to GPIO.output.

for _ in range(10):
 states = [not GPIO.input(gpio) for gpio in led_gpios]
 GPIO.output(led_gpios, states)
 sleep(1.0)

Finally, we will reset the GPIO configuration before the script exits.

GPIO.cleanup()

Once the file is saved, it can be executed as earlier, using the following command:

sudo python multiple_output.py

This script will also output nothing to the terminal but you will see the two LEDs
flash with opposite states 10 times before they both turn off.

Basic switch
Now that we have seen how the GPIO library can be used to control the output
devices, we will have a look at how it can be used to read the state of the GPIO
pins to determine the state of the input devices, such as buttons and switches.

To start us off, we will look at a simple switch, as shown in the following diagram:

Chapter 6

[91]

No additional circuitry is required here as the Raspberry Pi's GPIO pins can be
configured to connect an internal pull up or pull down resistor to each GPIO pin,
as we will see later in the example.

We start the Python file in the usual way. This time we will save the file as
basic_input.py.

import RPi.GPIO as GPIO
from time import sleep
GPIO.setmode(GPIO.BCM)

Now, we will define the GPIO pin the switch is connected to and configure it as
an input.

switch_gpio = 17
GPIO.setup(switch_gpio, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Now, we will loop forever, reading the state of the switch every second and printing
the state to the terminal.

try:
 while(True):
 state = not GPIO.input(switch_gpio)
 print "Switch is pressed: %d" % state
 sleep(1.0)

Finally, we will catch the KeyboardInterrupt exception, which is raised when the
user presses Ctrl - C to exit a program, and use this as a signal to reset the GPIO
configuration and exit.

except KeyboardInterrupt:
 GPIO.cleanup()

Once the script is saved, it can be executed using the following command:

sudo python basic_input.py

Accessing the GPIO Pins

[92]

Once running, the script will start outputting the state of the switch pin, as shown in
the following screenshot:

Switch using interrupt
Another option for reading input from devices is to configure an interrupt that
will watch the state of the GPIO pin and call a function in a separate thread when
the state changed is a certain way.

To demonstrate this, we will use both a switch and a LED in a circuit, as shown in
the following diagram:

Chapter 6

[93]

We will start the Python script in the usual way. This time we will save the file as
interrupt_input.py.

import RPi.GPIO as GPIO
from time import sleep
GPIO.setmode(GPIO.BCM)

Next, we will define the GPIO pins that the LED and the switch are connected to.

led_gpio = 4
switch_gpio = 17

Now, setup the GPIO pins for their functions.

GPIO.setup(led_gpio, GPIO.OUT)
GPIO.setup(switch_gpio, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Define the function to be called when the switch button is pressed. This is denoted
by the falling edge, as the pin will be going from high when the switch is open and to
low when the switch connects the pin to the ground.

Also, note that the callback functions can take a parameter; it is the GPIO number
that the interrupt was triggered by. In this case, we are ignoring it as we have no use
for it.

def toggle_led(_):
 GPIO.output(led_gpio, not GPIO.input(led_gpio))

Attach the created callback function to the GPIO library. Here, we are only using
the interrupt for the falling edges. It is also possible to detect the rising and both
the edges using RISING and BOTH in place of FALLING in the following line:

GPIO.add_event_detect(switch_gpio, GPIO.FALLING,
callback=toggle_led, bouncetime=500)

Here, the bouncetime parameter is used to limit the minimum time between the
interrupts being fired by the button changing state. This is a technique known as
debounceing.

We will have the main thread do very little work since the callback is handled in
a separate thread. As earlier, this allows you to exit the program using Ctrl - C.

try:
 while(True):
 sleep(1.0)
except KeyboardInterrupt:
 GPIO.cleanup()

Accessing the GPIO Pins

[94]

Once the script is complete, it can be executed with the following command:

sudo python interrupt_input.py

This script does not create any output on the terminal. However, when the switch is
pressed, you will see the state of the LED get toggled; specifically, the LED should
change state when the switch is pressed and do nothing when the switch is released.
However, it is normal to occasionally see the LED change state twice, particularly if
the switch contacts made a poor connection.

Universal Asynchronous Receiver/
Transmitter (UART)
The Raspberry Pi also has a Universal Asynchronous Receiver/Transmitter (UART)
connection on the GPIO header that can be used to interface with external hardware
(such as an Arduino). Fortunately, it is easy to use through the pySerial Python library
(https://pypi.python.org/pypi/pyserial), which provides access to the serial
ports on a variety of platforms.

Setting up the serial port
Before we can use the serial port on the Raspberry Pi, there are a couple of
configuration files that must first be changed to stop Raspbian from using the port
as an additional terminal, which would otherwise cause communication issues if
another piece of software attempted to use the port.

The first file that requires modification is /boot/cmdline.txt. Open this file as root
using the following command in the terminal:

sudo nano /boot/cmdline.txt

Here, we need to remove console=ttyAMA0,115200 from the single line of the file;
doing so tells the Pi not to use the serial port when it is booting.

https://pypi.python.org/pypi/pyserial

Chapter 6

[95]

Once completed, the file should look similar to what is shown in the
following screenshot:

Once done, press Ctrl - X followed by Y to exit nano and return to the terminal.

The next file is /etc/inittab which must also be modified as the root user.

sudo nano /etc/inittab

Here, we need to search for and comment out the following line. This will disable the
terminal being launched on the serial port once Raspbian boots.

2:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

Accessing the GPIO Pins

[96]

Once done, the file should look similar to the one shown in the following screenshot:

Finally, save the changes to /etc/inittab and reboot the Raspberry Pi with the
following command:

sudo reboot

Using pySerial
Once the required modifications to the terminal configuration are done, the pySerial
library can be installed through the pip package manager, using the following
command:

sudo pip install --upgrade pyserial

The --upgrade flag is used to update the existing installation, should it already be
included with the operating system, or other software or libraries.

As an example, we will simply connect the transmit and receive pins of the Raspberry
Pis UART connection on the GPIO header together; this way, any data that the
Raspberry Pi transmits it immediately receives.

Chapter 6

[97]

This can be done by connecting pins 8 and 10 together, as shown in the
following diagram:

Now, we will use the pySerial library to write a sample script that will send some data
to the serial port and read it back. We will save this file as pyserial_loopback.py.

First, we need to import the libraries that we will use.

import sys
import serial

Now, we will create and open the serial port object. Here, we are providing the path
to the serial port device (in this case, for the on board serial port), the baud rate (the
rate of data transfer in bits per second), and the read timeout is seconds.

port = serial.Serial("/dev/ttyAMA0", baudrate=9600, timeout=1)

Note that the baud rate has several standard values that must be
used for communication. These include: 110, 300, 600, 1200, 2400,
4800, 9600, 14400, 19200, 38400, 57600, 115200, 128000,, and 256000.

Accessing the GPIO Pins

[98]

Now that the port is created, we can send some data as a Python string.

port.write('Hello, world!')

Next, we will read a byte from the serial port at a time and print it directly to the
terminal until the read function times out, indicating that we have reached the
end of the message.

while True:
 c = port.read()
 if len(c) == 0:
 break
 sys.stdout.write(c)
sys.stdout.write('\n')

Once finished, we will close the serial port before the script exits.

port.close()

Now that the script has been written, we can save it and execute it using the
following command:

sudo python pyserial_loopback.py

This should produce the following output, showing that the serial port is
functioning correctly:

You can also try removing the wire link and running the script again, which will
result in the script exiting without printing any output to the terminal.

Additional libraries
While the RPI.GPIO module will certainly be sufficient for simple digital logic, you
may find that you need to interface to a device that requires the use of one of the
communication protocols supported by the Raspberry Pi, such as I2C or SPI.

Fortunately, there are Python libraries available that can do this; for I2C there is
smbus-cffi (https://pypi.python.org/pypi/smbus-cffi) and SPI can be used
through py-spidev (https://github.com/doceme/py-spidev).

https://pypi.python.org/pypi/smbus-cffi
https://github.com/doceme/py-spidev

Chapter 6

[99]

Summary
In this chapter, we looked at the ways in which the Raspberry Pi can interact with
external hardware through basic digital logic and how this can be done using the
RPI.GPIO Python module.

In the next chapter, we will continue looking at Pi specific hardware when we take
a look at the camera module and its accompanying Python library.

[101]

Using the Camera Module
In this chapter, we will look at the process for setting up the Raspberry Pi camera
module and the picamera Python module (https://github.com/waveform80/
picamera) that can be used to control the camera, take photos, and record video.

Setting up the camera module
First, we must unpack and connect the camera to the Raspberry Pi. When unboxing
the camera module, it is important to avoid exposing the camera to any static
electricity that may build up on surfaces and clothes; the camera module is quite
sensitive to this, and this has been a common cause of failure of the camera module.
This can be avoided by touching an exposed earth connection (for example, a water
pipe or unpainted metal case of an appliance).

When the camera module is out of the box, you will notice that one side of the
disconnected end of the white flat flex cable has a piece of rigid blue plastic on it
(the side opposite to the one with the row of 15 silver contacts), as shown in the
following photograph. This is the side of the connector that must face the Ethernet
port when inserted into the connector on the Raspberry Pi.

https://github.com/waveform80/picamera
https://github.com/waveform80/picamera

Using the Camera Module

[102]

Looking at the Raspberry Pi, you will see two long thin connectors; one near
the Ethernet and HDMI ports, and one near the power and GPIO ports (the exact
positioning depends on the model of the Raspberry Pi but this is a good guide for
all boards). The connecter for the camera is the one near the Ethernet and HDMI
ports, as shown in the following image (the Raspberry Pi here is a model B+):

To connect the camera, first lift up the retaining bracket on the connector so that the
end of the flat flex connector slots into the connector easily. Once the cable is fully
inserted and leveled in the connector, press down on the retaining bracket, and the
cable should be held firmly in the connector, as shown in the following image:

Chapter 7

[103]

Now that the camera is connected, we will enable it in Raspbian using the
raspi-config utility.

1.	 Open a terminal and start the utility using the following command:
sudo raspi-config

2.	 Using the arrow keys, navigate to the option 5 Enable Camera and
select it by pressing Enter:

Using the Camera Module

[104]

3.	 Using the arrow keys, select Enable and press Enter:

4.	 Using the arrow keys, select Finish and press Enter:

5.	 When asked to reboot, press Enter to select Yes:

Chapter 7

[105]

Now that the camera module is enabled and the Pi has rebooted, we can test the
camera module using the raspistill utility to ensure that it is working correctly.

To do a basic test to see that the camera is working, we can use the following
command to open the camera and display a feed on the connected monitor:

raspistill -t 0

This preceding command should give an output on the display similar to the
following image:

Note that this requires you to have a monitor attached via either an HDMI or a
composite video, as the output from the camera is rendered directly on the GPU
(Graphical Processing Unit) rather than in the desktop environment in Raspbian.

We can also use the following command to save a still image as a JPEG file. Here,
the -t parameter controls the amount of time in milliseconds between the camera
preview starting and the image being captured.

raspistill -t 5000 -o image.png

Note that it is important that the -t parameter is greater than around 1000ms to
allow the camera time to obtain good auto exposure parameters. If the time is too
short then you may end up with images that are either too dark or too light.

There are many other options that can be configured for the camera module, most of
which are available in raspistill. To see a full list of the options, you can use the
following command to get a list of the parameters that can be passed to raspistill:

raspistill --help 2>&1 | less

Using the Camera Module

[106]

Installing and testing the Python library
Now that we have the camera module installed and working, we can install and
start using the picamera library.

1.	 First, we need to install the pip package manager in order to install
the latest version of the picamera library. This can be done using the
following command:
sudo apt-get install python-pip

2.	 Next, we will update the installed version of the picamera library
using the following command:
sudo pip install --upgrade picamera

Now that the library is installed, we can test it out with a basic example to ensure
that both the camera and the library are working correctly. This also gives us a
chance to look at the basic usage of the picamera library.

We will do this from an interactive Python shell. First, we will import the
required libraries:

import time
from picamera import PiCamera

Next, we will use the with statement to manage opening and closing the camera:

with PiCamera() as cam:

Now, we will set the resolution the camera will capture at and start the preview,
which allows the camera to start automatic exposure correction:

 cam.resolution = (1024, 768)
 cam.start_preview()

Similar to the requirement for the -t parameter in raspistill to be at least 1
second, we will now wait 2 seconds before capturing any images:

 time.sleep(2)

Finally, we will capture a still image and save it as python_image.jpg in the
current directory:

 cam.capture("python_image.jpg")

After this, the camera will be closed automatically as control flow will exit the with
block. You can now open the python_image.jpg file that was saved. This minimal
working example will be the basis of the rest of the scripts that we will look at in
this chapter.

Chapter 7

[107]

Writing applications for the camera
Now, we will look at a few different possible uses for the camera module and some
of the functionality of the picamera library. While this covers the basics of using
the module, it may also be worth a look at the library documentation at picamera.
readthedocs.org to learn more about the functionality offered by the library.

A time lapse recorder
The first example we will look at is a simple timelapse still recorder. Essentially, all
this will do is capture a series of still images with a given delay between each image.

The code for the Python script that will do this is as follows. First, we will import all
the libraries and functions that we will use in the script:

import sys
import os
from string import Template
from time import sleep
from threading import Thread
from picamera import PiCamera

Next, we will create a thread class that will perform the still image capture:

class ImageCapture(Thread):
 def __init__(self, filename, resolution=None, delay=1.0):
 Thread.__init__(self)
 self._filename = filename
 self._delay = delay
 self._resolution = resolution if resolution is not None
else (1024, 768) def run(self):
 with PiCamera() as cam:
 cam.resolution = self._resolution
 cam.start_preview()
 sleep(self._delay)
 cam.capture(self._filename)

This is essentially the basic still image capture example that we used in the
interactive terminal previously, wrapped in a Thread class so that it can be
performed asynchronously from the main thread. We use this technique so that
the time between the images is not skewed by the time taken for the image capture
process, which is not a constant time. Hence, simply adding a delay between the
calls to capture may not give a reliable delay between the images.

picamera.readthedocs.org
picamera.readthedocs.org

Using the Camera Module

[108]

Next, we will do some very basic command line parsing in order to get the delay
between the images and the directory in which to save the captured images from
the command line input. To do this, we are simply using sys.argv, which gives a
list of all input from the command line when a script is executed:

delay = float(sys.argv[1])
save_directory = sys.argv[2]

Now, we will check to see if the directory in which the images will be saved already
exists on the file system; if it does not, then we will create it. This is done using the
os module:

if not os.path.exists(save_directory):
 os.makedirs(save_directory)

Now, we will create a string template that will be used to determine the filename of
a captured image:

filename_format = Template("${frameno}_img.jpg")

Finally, we will set up a loop that will start a new image capture thread with a delay
of the number of seconds provided on the command line:

frame_no = 0
while True:
 filename = os.path.join(save_directory,
filename_format.substitute(frameno=frame_no))
 ImageCapture(filename).start()
 frame_no += 1
 sleep(delay)

Once the script has been completed, save it as timelapse_recorder.py. It can now
be executed using the following command:

python timelapse_recorder.py 60 ~/tl_capture

The script does not produce any output to the terminal. However, if you open a
file manager, you should start to see images being saved to the directory that you
specified (~/tl_capture in this case) at the given timelapse interval (60 seconds
in this case).

You will also see the preview image displayed on the entire screen when the image is
about to be taken.

Ctrl - C can be used when you wish to end the timelapse capture.

Chapter 7

[109]

A point-and-shoot camera
This example will use two switches connected to the GPIO port to produce a simple
point and shoot camera capable of recording both still images and video.

Firstly, we will connect the two switches to the Raspberry Pi, as shown in the following
diagram. One switch should be a push to make switch, and the other a single pole
toggle switch. The push to make switch will be used to start and stop the capture,
and the toggle switch will switch between the photo and video capture modes.

As earlier, we will start the Python script by including the modules and functions
used by the script:

import sys
import os
from datetime import datetime
from string import Template
from time import sleep, time
from picamera import PiCamera
import RPi.GPIO as GPIO

Using the Camera Module

[110]

This script will take a single parameter for the directory in which to store the
captured photos and videos. This code is the same as was used in the previous
example to parse this parameter and create the directory if it did not already exist:

save_directory = sys.argv[1]
if not os.path.exists(save_directory):
 os.makedirs(save_directory)

Next, we are defining the GPIO pins used for each switch:

capture_sw_gpio = 4
capture_mode_gpio = 17

This function is used to capture a still image and is called by an event handler on the
capture button. This code is very similar to the first example shown in this chapter,
except that the delay here is given by the capture button still being held rather than
a fixed amount of time.

def capture_still(filename, resolution=None):
 print "Still mode"
 with PiCamera() as cam:
 cam.resolution = resolution if resolution is not None else
(1280, 720)
 cam.start_preview()
 while not GPIO.input(capture_sw_gpio):
 sleep(0.5)
 cam.capture(filename)

This function is used to capture a video and is called by the event handler for the
capture button. Here, you will notice that instead of the sleep function, we are
using the wait_recording function of the camera object. This function performs
error checking of the video stream while it is in the delay loop, ensuring that errors
are reported immediately rather than on the final call to stop_recording.

def capture_video(filename, resolution=None):
 print "Video mode"
 with PiCamera() as cam:
 cam.resolution = resolution if resolution is not None else
(640, 480)
 cam.start_recording(filename)
 while not GPIO.input(capture_sw_gpio):
 cam.wait_recording(0.5)
 cam.stop_recording()

Chapter 7

[111]

This function is the event handler for the capture button that is called when the
button is pressed. This function is responsible for determining the capture mode
based on the status of the capture mode switch, generating a filename for the
captured media, and calling the appropriate capture function.

def handle_capture_start(_):
 print "Starting capture"
 mode_sw = GPIO.input(capture_mode_gpio)
 mode = 'still' if mode_sw else 'video'
 ext = 'jpg' if mode_sw else 'h264'
 timestamp = datetime.fromtimestamp(time()).
strftime('%Y%m%d_%H%M%S')
 filename =
Template("${datetime}_${mode}.${ext}").substitute(mode=mode,
ext=ext, datetime=timestamp)
 filepath = os.path.join(save_directory, filename)
 if mode == 'still':
 capture_still(filepath)
 elif mode == 'video':
 capture_video(filepath)
 print "Capture saved to: " + filepath

Next, we will setup the GPIO pins. Both pins for the switches have the pull up
resistors enabled and an event handler is added to the capture button pin that
calls the handle_capture_start function when the button is pressed.

GPIO.setmode(GPIO.BCM)
GPIO.setup(capture_sw_gpio, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(capture_mode_gpio, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.add_event_detect(capture_sw_gpio, GPIO.FALLING,
callback=handle_capture_start, bouncetime=500)

Here, we will have the main thread do nothing as all the image capture is done in the
thread created by the GPIO event handler. We will also add a try-catch block so that
the GPIO configuration is cleared when Ctrl - C is used to exit the script.

try:
 while True:
 sleep(1)
except KeyboardInterrupt:
 GPIO.cleanup()

Finally, save the script as point_shoot_camera.py and execute it using the
following command:

sudo python point_shoot_camera.py ~/captures

Using the Camera Module

[112]

Once the script is running, try pressing the capture button for around 3 seconds.
You will start to see output similar to that shown in the following screenshot appear
on the terminal.

When in photo mode (the mode switch is open), the preview is started when the
capture button is first pressed and continues until it is released once more, at which
point the photo is taken.

In video mode (the mode switch is closed), pressing the capture button starts video
recording. The recording continues while the capture button is held and stops when
it is released.

An image effect randomizer
The next script is a simple demonstration script that applies randomized image and
color effects to a still image captured from the camera.

We will once again start our Python script by importing the required libraries and
functions that we are using in the script:

import sys
from random import randint
from time import sleep
from picamera import PiCamera
import RPi.GPIO as GPIO

Next, we will get some input from the command line; specifically, the filename to
save the captured still image as and the type of effect randomization desired:

filename = sys.argv[1]
effect_type = sys.argv[2]

Chapter 7

[113]

Here, we will provide some basic validation for the effect randomization type
provided via the command line. This is as simple as checking if the option is
one of the three valid options and exiting with a message to the user if not.

if effect_type not in ['colour', 'filter', 'both']:
 print "Effect type must be one of: colour, filter, both"
 sys.exit(1)

If either the colour or both option was selected as the effect type, then we will now
generate a random color effect. This is done by setting a random integer between 0
and 256 for the U and V modifier values, which are used to scale the U and V color
components of the YUV image (https://en.wikipedia.org/wiki/YUV):

colour = None
if effect_type in ['colour', 'both']:
 colour = (randint(0, 256), randint(0, 256))
 print "Colour effect: " + str(colour)

If either the filter or both option was selected, then we will choose a random
image effect to be applied to the image:

image_effect = 'none'
if effect_type in ['filter', 'both']:
 image_effect = PiCamera.IMAGE_EFFECTS.keys()[randint(0,
len(PiCamera.IMAGE_EFFECTS))]
 print "Filter: " + image_effect

Now, we will start the capture. Note here the additional two lines that set the
color and the image effects. We will also use a longer preview time to keep the live
preview on the screen for longer.

with PiCamera() as cam:
 cam.resolution = (1280, 720)
 cam.image_effect=image_effect
 cam.color_effects=colour
 cam.start_preview()
 sleep(15)
 cam.capture(filename)

Finally, save the Python script as random_effects.py and execute it using the
following command:

python random_effects.py img.jpg both

This will randomize both the color and the image effects. You can also change
both to either colour or filter in order to randomize just one of the effects.

https://en.wikipedia.org/wiki/YUV

Using the Camera Module

[114]

When the script is executed, it will print the values for the effects that were applied
to the terminal, as shown in the following screenshot:

Summary
In this chapter, we looked at the process of setting up the Raspberry Pi camera
module and how it can be tested using the raspistill utility bundled by default
with Raspbian.

We then went on to use the picamera Python library to control the camera in a
variety of situations with customized Python scripts.

In the next chapter, we will look at ways in which a Python application can extract
data from online sources.

[115]

Extracting Data from
the Internet

In this chapter, we will look at ways we can extract data and files from the Internet
using a range of data formats and services, namely web services (or Application
Protocol Interfaces (APIs)) using the Extensible Markup Language (XML) and
JavaScript Object Notation (JSON) data formats.

We will also look at how we can use Python to download files and extract information
from web pages for when a website does not offer an API to access their data.

Using urllib2 to download data
Before we get on to processing the data we extract from the online sources, we will
first demonstrate use of the in-built urllib2 Python module for downloading data
from the internet.

This will be used in all the examples later on in the chapter for parsing information
downloaded from the various online sources.

In the following example, we will write a simple script that will download the text
contents of a web page and print them to the terminal. This is not a practical use for
this module, however it does demonstrate the use of the module for retrieving data
from web resources.

We will start by importing the Python modules required for this script. We will save
this script file as urllib_example.py:

import urllib2
import sys

Extracting Data from the Internet

[116]

In this line, we are taking the first argument on the command line as a URL to open
and return the HTML contents of:

url = sys.argv[1]

Now, we will create a request object that represents a request to be sent to the web
server. This is not strictly required in this example, however, we will see its use later
on in the chapter.

request = urllib2.Request(url)

Once the request object has been created and configured, it can be sent to the server
using the following line. This will request the data from the server and return a
response object.

response = urllib2.urlopen(request)

In the following lines, we are retrieving the response as a string and displaying it to
the terminal:

data = response.read()
print data

Once the script is completed, it can be executed using the following command. Note
that the URL you provide to the script is not critical and can be set to any valid web
address.

python urllib_example.py http://google.com

This will produce an output similar to the following screenshot:

Chapter 8

[117]

Parsing JSON APIs
In this section, we will be creating a simple currency converter application that will
be run from the command line using the free to use Fixer.io API (http://fixer.
io) to provide the exchange rates, which are updated daily (which is less frequent
than some other paid for APIs, but will be good enough for our use).

This is a JSON API; an example URL is: http://api.fixer.io/
latest?base=GBP&symbols=JPY,EUR

This is making a request for the exchange rates to convert British pounds to Euro and
Yen and returns data in the format:

{
 "base": "GBP",
 "date": "2015-07-08",
 "rates": {
 "JPY": 186.64,
 "EUR": 1.3941
 }
}

As we will see in the next code, this data can be parsed using the json Python module,
which will return the structure of the JSON tree as a nested tree of Python dictionaries.

We will start by importing the required Python modules for this script, which we
will save as currency_converter.py:

import urllib2
import json
from string import Template
import sys

Now, we will define a string template, which will be used to create URLs for the
given API calls. Here, the string has two substitutions: one for the currency symbol
to be converted from, and another for a comma separated list of the currency
symbols to convert to.

URL_TEMLATE =
Template('http://api.fixer.io/latest?base=${from_curr}&symbols=$
{to_curr}')

The get_rates function is used to retrieve a set of exchange rates for a given base
currency and a list of target currencies:

def get_rates(from_curr, to_currs):
 target_currencies = ','.join(to_currs)

http://fixer.io
http://fixer.io
http://api.fixer.io/latest?base=GBP&symbols=JPY,EUR
http://api.fixer.io/latest?base=GBP&symbols=JPY,EUR

Extracting Data from the Internet

[118]

 api_url = URL_TEMLATE.substitute(from_curr=from_curr,
 to_curr=target_currencies)
 response = urllib2.urlopen(api_url)
 json_response = response.read()

The following two lines are the lines that parse the JSON data and select the section
containing the exchange rates, which is returned as a Python dictionary:

 result = json.loads(json_response)
 return result['rates']

The convert function is responsible for taking a dictionary of the exchange rates
and converting a value in the original currency to a value in each of the target
currencies. The results of the conversion are returned as a list of dictionaries for
each target currency.

def convert(from_value, from_curr, to_currs):
 rates = get_rates(from_curr, to_currs)
 conversions = list()
 for symbol in to_currs:
 new_value = rates[symbol] * from_value
 conversion = {'symbol':symbol,
 'rate': rates[symbol],
 'value': new_value}
 conversions.append(conversion)
 return conversions

The process_cli function is used to read the original currency and value, as well as
the list of target currencies to convert from the command line arguments and calls to
the other functions; the conversion then prints the results on the terminal.

def process_cli(params):
 value_to_convert = float(params[0])
 start_currency = params[1].upper()
 conversion_currencies = [curr.upper() for curr in params[3:]]
 conversions = convert(value_to_convert,
 start_currency,
 conversion_currencies)
 print '%.2f %s in:' % (value_to_convert, start_currency)
 print 'CURRENCY\tRATE\t\tVALUE'
 for c in conversions:
 print '%s\t\t%.2f\t\t%.2f' % (c['symbol'], c['rate'],
c['value'])

Chapter 8

[119]

This next final piece of code calls the process_cli function when the script is run as
a standalone script:

if __name__ == "__main__":
 process_cli(sys.argv[1:])

Once the file has been saved, it can be executed using commands in the same format,
as shown next:

python currency_converter.py 345.453 GBP in usd jpy cad Eur

Note that the case of the currency symbols is not important. This will create an
output similar to that shown in the following screenshot:

Parsing XML APIs
In this section, we will look at creating a simple weather forecast application
using the OpenWeatherMap 5 day forecast API (http://openweathermap.org/
forecast#5days), which can return an XML document containing the forecast data.

This API is accessed through a URL in the following format; in this case, we are
searching for the weather in Harwell, UK:

http://api.openweathermap.org/data/2.5/forecast?q=Harwell,
GB&mode=xml

This gives an output in the following format, where the time element is repeated for
the number of forecasts that are available in the 5 day time range:

<?xml version="1.0" encoding="UTF-8"?>
<weatherdata>
 <location>
 <name>Harwell</name>
 <type />
 <country>GB</country>
 <timezone />
 <location altitude="0" latitude="51.599468" longitude="
-1.29175" geobase="geonames" geobaseid="0" />
 </location>
 <credit />

http://openweathermap.org/forecast#5days
http://openweathermap.org/forecast#5days

Extracting Data from the Internet

[120]

 <meta>
 <lastupdate />
 <calctime>0.0443</calctime>
 <nextupdate />
 </meta>
 <sun rise="2015-07-08T03:57:59" set="2015-07-08T20:22:06" />
 <forecast>
 <time from="2015-07-08T18:00:00" to="2015-07-08T21:00:00">
 <symbol number="800" name="sky is clear" var="01n" />
 <precipitation />
 <windDirection deg="317.004" code="NW" name="Northwest"
/>
 <windSpeed mps="5.82" name="Moderate breeze" />
 <temperature unit="celsius" value="286.81" min="286.81"
max="287.573" />
 <pressure unit="hPa" value="1019.04" />
 <humidity value="63" unit="%" />
 <clouds value="clear sky" all="0" unit="%" />
 </time>
 </forecast>
</weatherdata>

The DOM method
The first method of parsing the XML data will be using the Document Object Model
(DOM), which represents the structure of the XML document as a series of objects.
The API to this is very similar to the API in JavaScript for manipulating HTML in
the webpage.

We will start by setting the character encoding for the script. This is required as
we will be using the degree symbol later in the script, and the UTF-8 encoding is
required to display this character.

-*- coding: utf-8 -*-

Next, we will continue by importing the modules that will be required for this script:

from datetime import datetime
import urllib2
from string import Template
import sys
import xml.dom.minidom

Chapter 8

[121]

The following string template defines the format for the API URL that will be
requested. This has a single substitution for the location of which to retrieve
the forecast.

URL_TEMLATE =
Template('http://api.openweathermap.org/data/2.5/forecast?q=$
{location}&mode=xml')

Here, we retrieve the name of the location to search for from the command line
and retrieve the XML document returned by the API as a string:

search_location = sys.argv[1]
api_url = URL_TEMLATE.substitute(location=search_location)
response = urllib2.urlopen(api_url)
xml_response = response.read()

Now, we will parse the XML as a DOM tree, which will allow us to search through
the document to find certain data:

DOMTree = xml.dom.minidom.parseString(xml_response)
weather_data = DOMTree.documentElement

We will first search for the location details of the location that was actually used in
retrieving the forecast (as there are cases where this can be different to the search
text). To do this, we first retrieve the location block by selecting the first tag named
location:

location = weather_data.getElementsByTagName('location')[0]

Next, we do the same process to retrieve the name and country tags, this time also
taking the contents of the tag:

location_name =
location.getElementsByTagName('name')[0].childNodes[0].data
location_country =
location.getElementsByTagName('country')[0].childNodes[0].data

This line simply outputs the information to the terminal about the location used in
the forecast:

print '5 day forecast for %s, %s.\n' % (location_name,
location_country)

Now, we loop over each of the time blocks in the forecast block of the
XML document:

forecasts = weather_data.getElementsByTagName('time')
for forecast in forecasts:

Extracting Data from the Internet

[122]

Next, we extract the time this forecast is for—a string describing the overall weather
conditions and the temperature:

 api_time_string = forecast.getAttribute('from')
 time = datetime.strptime(api_time_string, '%Y-%m-
%dT%H:%M:%S')
 time_string = datetime.strftime(time, '%H:%M %d %B')
 overview = forecast.getElementsByTagName('symbol')[0]
 overview_string = overview.getAttribute('name')
 temperature = forecast.getElementsByTagName('temperature')[0]
 temperature_string = '?'
 if temperature.hasAttribute('value'):
 temperature_string = '%.1f' %
(float(temperature.getAttribute('value')) - 273.15)

Finally, we print a line to the terminal containing the weather conditions extracted
from the XML:

 print u'%s: %s, %s°C' % (
 time_string,
 overview_string,
 temperature_string)

You can type the degree symbol (°) by holding the Alt key and typing 248.

Once the script is completed, it can be saved as weather_xml_dom.py and executed
with the following command:

python weather_xml_dom.py Harwell,UK

This will provide an output similar to that shown in the following screenshot:

Chapter 8

[123]

The SAX method
In this example, we will recreate the weather utility that, we created using the DOM
method of parsing XML, but instead, here, we will use the Simple API for XML
(SAX) method. The main difference is that DOM represents the entire document,
whereas SAX operates over smaller sections of the document as it is read. Since
it does not require the entire document to be read before it can be parsed by the
application, the SAX method is much more memory efficient than DOM for
parsing larger XML documents.

The start of this script will be very similar to that of the DOM example, the only
difference being the XML parsing libraries:

-*- coding: utf-8 -*-
from datetime import datetime
import urllib2
import xml.sax
from string import Template
import sys

Using the SAX method, we must create a class that will be used to handle the XML
data as it is parsed from the string. This must inherit from the ContentHandler class
provided by the xml.sax module.

class WeatherHandler(xml.sax.ContentHandler):
 def __init__(self):
 self._tag_buffer = list()
 self._location_name = '?'
 self._location_country = '?'
 self._time_string= ''
 self._overview_string = ''
 self._temperature_string = ''

The startElement function is called when a new element is detected in the XML
document. Here, we are using it to record the current position in the document
hierarchy using the _tag_buffer variable, and to record some of the data that is
stored in the attributes:

 def startElement(self, tag, attributes):
 self._tag_buffer.append(tag)
 if self._tag_buffer[-2:] == ['weatherdata', 'location']:
 self._location_name = '?'
 self._location_country = '?'
 elif self._tag_buffer[-2:] == ['forecast', 'time']:
 time = datetime.strptime(attributes['from'], '%Y-%m-
%dT%H:%M:%S')

Extracting Data from the Internet

[124]

 self._time_string = datetime.strftime(time, '%H:%M %d
%B')
 self._overview_string = '?'
 self._temperature_string = '?'
 elif self._tag_buffer[-2:] == ['time', 'symbol']:
 if 'name' in attributes:
 self._overview_string = attributes['name']
 elif self._tag_buffer[-2:] == ['time', 'temperature']:
 if 'value' in attributes:
 self._temperature_string = '%.1f' %
(float(attributes['value']) - 273.15)

The endElement function is called when an element is closed. Here, we are
using it to update the position in the hierarchy by removing the last entry in
the _tag_buffer variable and printing information to the terminal based on the
type of tag that was closed:

 def endElement(self, tag):
 if self._tag_buffer[-2:] == ['weatherdata', 'location']:
 print '5 day forecast for %s, %s.\n' % (self._location_
name, self._location_country)
 elif self._tag_buffer[-2:] == ['forecast', 'time']:
 print u'%s: %s, %s°C' % (
 self._time_string,
 self._overview_string,
 self._temperature_string)
 self._tag_buffer.pop()

The characters function is called when the contents of a tag are read. It is used to
record the location information in our parser.

 def characters(self, content):
 if self._tag_buffer[-2:] == ['location', 'name']:
 self._location_name = content
 elif self._tag_buffer[-2:] == ['location', 'country']:
 self._location_country = content

The following section of the code is identical to that used in the script with the
DOM method:

URL_TEMLATE =
Template('http://api.openweathermap.org/data/2.5/forecast?q=$
{location}&mode=xml')
search_location = sys.argv[1]
api_url = URL_TEMLATE.substitute(location=search_location)
response = urllib2.urlopen(api_url)
xml_response = response.read()

Chapter 8

[125]

Now, we will use the content handler class we just created to parse the XML string:

content_handler = WeatherHandler()
xml.sax.parseString(xml_response, content_handler)

Once the script is complete, save it as weather_xml_sax.py, and it can be executed
using the following command:

python weather_xml_sax.py Harwell,UK

This will provide an output similar to that shown in the following screenshot:

Parsing a web page using BeautifulSoup
In this section, we will use the BeautifulSoup library to parse an HTML web page
to extract information from it. This is particularly useful for when you wish to
interact with a web page that does not provide an API to access their data, with the
drawback being that it is more likely that an application using this method will be
broken by a change in the web page structure (rather than an API, which is rarely
changed, and when they are, developers are typically given warning of such a
change).

Extracting Data from the Internet

[126]

In this next example, we will write a simple script to download low resolution
previews of images from Pixiv (www.pixiv.net). This script will start in a similar
way to the others we have written so far. Note that the UTF-8 character encoding
is required here as the contents of the web pages are likely to contain Japanese
characters.

-*- coding: utf-8 -*-
from bs4 import BeautifulSoup
import urllib2
import os
import sys
from string import Template

This string template defines the URL for the page that allows unregistered
users to view a preview of an image. Here, there is a substitution for the image ID
(an 8 digit number).

URL_TEMPLATE =
Template('http://www.pixiv.net/member_illust.php?mode=
medium&illust_id=${illust_id}')

The following three lines download the contents of the web page, as has been used
in the previous examples in this chapter:

pixiv_illust_id = sys.argv[1]
page_url = URL_TEMPLATE.substitute(illust_id=pixiv_illust_id)
response = urllib2.urlopen(page_url)

The following line parses the web page in order to allow us to search and read the
document using the BeautifulSoup functions:

soup = BeautifulSoup(response.read())

Now that we have the web page searchable in BeautifulSoup, we need to find
where we need to look in the document for the information we want to retrieve.
We will start with the title of the image.

www.pixiv.net

Chapter 8

[127]

In order to find the location of such information in the HTML tree, it is worth
opening the web page in a browser that allows you to show the relevant HTML
source for a highlighted section of the page (I have used Google Chrome in the
examples here).

The following image shows the image title being stored in an h1 tag within a div
tag of class userdata:

We can use BeautifulSoup to search for this data using the following two lines of
code; the first line finds the div tag, and the second selects the first h1 tag:

user_data = soup.find("div", {"class": "userdata"})
img_title = user_data.h1.contents[0]

Extracting Data from the Internet

[128]

The second piece of data that we will retrieve is the author of the image. We will
use the web browser to search for this in the same way and find it to be in an h2 tag
within the same div tag as the title, as shown in the following screenshot:

Since we already have the div tag as the image_data variable, retrieving the image
author is a simple one line task:

img_author = user_data.h2.a.contents[0]

The final piece of information that we need to obtain is the URL from which we can
download the low resolution version of the image. As is shown in the following
screenshot, this is stored as the source of the image displayed in the div tag of the
class img-container:

Chapter 8

[129]

This information can be selected using the following line, which selects the src
attribute from the img tag:

img_url = soup.find("div", {"class": "img-
container"}).a.img['src']

Now that we have all the information about the image, we can download it using
urllib2, as we have previously done with plain text for web pages and APIs.
Here, we are also attaching a header to the request before it is sent; in this case,
this is to allow us to download the image, as a query without this header will fail:

print 'Downloading %s by %s' % (img_title, img_author)
img_request = urllib2.Request(img_url)
img_request.add_header('Referer', 'http://www.pixiv.net/')
img_data = urllib2.urlopen(img_request).read()

Extracting Data from the Internet

[130]

Finally, we will save the image to disk using Python's native file IO functions, which
were covered in Chapter 3, Working with Data Structures and I/O. The first two lines
here are used to determine the filename based on the title, the author retrieved from
the web page, and the image extension of the image URL:

img_extension = os.path.splitext(img_url)[1][1:]
img_filename = '%s_%s.%s' % (img_author, img_title,
img_extension)
img_file = open(img_filename, 'wb')
img_file.write(img_data)
img_file.close()
print 'Saved as %s' % (img_filename)

When the script is complete, we can save the file as pixiv_downloader.py.
Before we can run the script, we must first install the BeautifulSoup library
using the following command:

sudo pip install beautifulsoup4

Now that we have all the required libraries installed, we can execute the script using
the following command:

python pixiv_downloader.py 49141094

This will produce the following output on the terminal, and you will see the image
file appear in the current directory:

Summary
In this chapter, we looked at the urllib2 Python module and how this can be used
to download data from the internet, as well as a series of modules and libraries for
parsing the data in a variety of formats once it has been downloaded.

In the next chapter, we will start looking at building complete applications as we
start designing and implementing command line interfaces.

[131]

Creating Command-line
Interfaces

In this chapter, we will take a look at how we can use the argparse module to create
easy to use command line interfaces (CLIs). CLIs can provide a much easier way to
develop interface for your applications and are appropriate for situations where a
graphical interface is not necessarily required.

To demonstrate the use of the module, we will build a simple unit conversion
application that allows the user to input a value in a given unit and have the
program convert it to a set of different units.

Unit conversion application
Before we can design the command line interface, we need to build up the framework
for the unit conversion application. A rough structure of this application is shown in
the following UML diagram:

Creating Command-line Interfaces

[132]

Note that because the unit conversion portion of this application
is not the main focus here, not all the code for the unit conversions
will be listed. However, they are available with the code download
for this chapter.

The UnitTable class contains functions that convert between the units by first
converting to a common base unit. To do this, there are two dictionaries with
conversion steps for each unit supported by the table: one to convert to from
the base unit and one to convert to the base unit.

Additional tables are created by inheriting from the UnitTable class and adding
new entries to the to_base_unit and from_base_unit dictionaries. Note that
every unit in a unit table must be able to convert to and from the base unit.

We will start by using the existing unit conversion framework by copying the
unitconverter directory from the code provided for this chapter to a directory
on the Pi and removing the CLI.py file for the time being.

Once the Python files are in place for the application, we can add a setup.py file
that will be used to package the code. For now, this will include only the code to
include the unit conversion utility as a library.

from setuptools import setup
setup(
 name='unitconverter',
 version='0.1.0',
 description='Command line tool for unit conversion',
 classifiers=[
 'Natural Language :: English',
 'Programming Language :: Python :: 2.7',
],
 author='Dan Nixon',
 packages=['unitconverter', 'unitconverter.unit_tables'],
 include_package_data=True,
 zip_safe=False)

Chapter 9

[133]

At this point, the code in the directory should follow the structure shown in the
following screenshot:

This will install the unitconverter package so that it can be included in any
Python code we write. To demonstrate this, we can first install the module using
the following command:

sudo python setup.py install

This command will give an output similar to that shown in the following screenshot:

Once the module is installed, we can demonstrate its use using the interactive
Python terminal, using the following script:

from unitconverter.Converter import get_table, convert_units
get_table('time').get_units()
convert_units('energy', 200, 'wh', ['j', 'hph'])

Creating Command-line Interfaces

[134]

Here, the first line simply imports functions from the unit conversion library, the
second line returns a list of all the units the energy unit table is capable of converting,
and the third line converts 200 Watt-hours to Joules and horsepower-hours.

The output of this script is shown in the following screenshot:

Command-line interface
Now that the framework for the unit conversion is complete, we can start work on
the command line interface, used to form the full application.

We will expand the application to include a command line interface by creating a
new file named CLI.py in the unitconverter directory. We will start this file by
including the required modules and functions:

import argparse
import inspect
from Converter import get_table, convert_units

The run_cli() function is going to be called whenever the unit conversion application
is invoked from the command line. It is responsible for parsing the input from the
command line and performing the required conversions. This starts by creating a
ArgumentParser object, to which we can add arguments that are to be parsed from
the command line:

def run_cli():
 parser = argparse.ArgumentParser(description='Tool for
converting units')

The first argument will be used to define the conversion table that will be used in the
unit conversion:

 parser.add_argument(
 'table',
 metavar='TABLE',
 action='store',
 type=str,

Chapter 9

[135]

 help='Unit table to use in conversion'
)

We will now create two subparsers: one for unit conversion mode and another for
listing the units that are supported by a given unit table. The set_defaults function
is used to set the default values for a subparser. In this case, we are using it to provide
a method of determining which subparser was used:

 subparsers = parser.add_subparsers(help='operation to be
performed')
 list_table_parser = subparsers.add_parser('list')
 list_table_parser.set_defaults(which='list')
 conversion_parser = subparsers.add_parser('convert')
 conversion_parser.set_defaults(which='convert')

Next, we will add an optional argument for the subparser for the mode to list all the
possible conversions. This argument, when provided, will also output the formula
that converts the base unit to each given formula.

 list_table_parser.add_argument(
 '-m', '--method',
 action='store_true',
 help='Also output the conversion method from the base
unit'
)

We will now add positional requirements to the subparser for unit conversion mode,
which will be used to parse the original value, the unit it is in, and a list of the units
to convert to:

 conversion_parser.add_argument(
 'value',
 metavar='VALUE',
 type=float,
 action='store',
 help='The value to convert'
)
 conversion_parser.add_argument(
 'from_unit',
 metavar='FROM',
 action='store',
 type=str,
 help='Unit to convert from'
)
 conversion_parser.add_argument(
 'to_units',

Creating Command-line Interfaces

[136]

 metavar='TO',
 action='store',
 nargs='+',
 type=str,
 help='Unit(s) to convert to'
)

The next step is to call the parse_args function to parse the options from the
command line. This will return a Python namespace containing the options that
have been retrieved.

 props = parser.parse_args()

Next, depending on whether the script was invoked in the unit conversion or the
listing mode, we will run either the _run_unit_list or _run_conversion function
to perform the processing of the application:

 if props.which == 'list':
 _run_unit_list(props)
 elif props.which == 'convert':
 _run_conversion(props)

This function is used when the application is invoked in the listing mode. In this
mode, all the units in a given unit table are printed to the terminal, optionally if the
-m parameter is given, then the formula used to convert from the base unit to each
unit will also be given.

def _run_unit_list(props):
 table = get_table(props.table)
 print 'Unit table %s can convert between the units:'
 for unit in table.get_units():
 if props.method:
 if unit == table.base_unit:
 formula = 'base unit'
 else:

This code is responsible for retrieving the formula used in the lambda that performs
the unit conversion from the base unit to the current unit being printed. This is done
using the inspect module, which can be used to retrieve the source code for Python
types.

 conversion = inspect.getsource(table.from_base_
unit[unit])
 formula = conversion[conversion.
index(':')+1:conversion.index('\n')].strip(
)

Chapter 9

[137]

 print '%s (%s)' % (unit, formula)
 else:
 print unit

This function is used to run the application in the unit conversion mode. Here, it uses
the functions in the Converter module to perform the conversion and prints the
results to the terminal.

def _run_conversion(props):
 results = convert_units(table_name=props.table,
 value=props.value,
 value_unit=props.from_unit,
 targets=props.to_units)
 for result in results:
 print '%f %s = %f %s' % (props.value, props.from_unit,
 result['converted_value'],
 result['dest_unit'])

At this point, the code structure should be as shown in the following image:

The next step is to add the console entry point to the setup.py file so that the
command is registered when the package is installed. The following code should
be added under the line containing version:

entry_points = {
 'console_scripts': ['unitconvert=unitconverter.CLI:run_cli'],
},

Creating Command-line Interfaces

[138]

Next, run the following command once again to install the package; this time also
installing the command line interface files:

sudo python setup.py install

Now that the application is installed, it can be executed using the unitconvert
command on the shell. An example of this showing the units of energy that can
be converted is given as follows:

unitconvert energy list

This gives the output shown in the following screenshot:

The same command can also be used with the -m argument as shown next, which
also outputs the conversion formula:

unitconvert energy list -m

This gives the output shown in the following screenshot:

The application can be used to perform a unit conversion by providing the original
value, its unit, and a list of the units to convert to. For example, to convert 2500
kilocalories (or nutritional calories) to Calories, Joules, and electron volts, the
following command would be used:

unitconvert energy convert 2500 kcal cal j ev

Chapter 9

[139]

This gives the output shown in the following screenshot:

Summary
In this chapter, we looked at how the argparse Python module can be used to
create command line interfaces around applications.

In the next chapter, we will look at the ways in which we can troubleshoot the
Python code we write, and design applications to be easily debugged by having
them write log files.

[141]

Debugging Applications with
PDB and Log Files

In this chapter, we will learn more about how to debug Python code using the
Python Debugger (PDB) tool and how we can use the Python logging framework
to make complex applications written in Python easier to debug when they fail.

We will also look at the technique of unit testing and how the unittest Python
module can be used to test small sections of a Python application to ensure that
it is functioning as expected.

These techniques are commonly used in applications written in other languages
and are good skills to learn if you are often going to be developing applications.

We will be making additions to the calculator application developed in Chapter 4,
Understanding Object-oriented Programming and Threading; a copy of the code for
this is included in the code for this chapter.

The Python debugger
PDB is a tool that allows real time debugging of running Python code. It can help
to track down issues with the logic of a program to help find the cause of a crash
or unexpected behavior.

PDB can be launched with the following command:

pdb2.7 do_calculaton.py

Debugging Applications with PDB and Log Files

[142]

This will open a new PDB shell, as shown in the following screenshot:

We can use the continue command (which can be shortened to c) to execute the next
section of the code until a breakpoint is hit. As we are yet to declare any breakpoints,
this will run the script until it exits normally, as shown in the following screenshot:

We can set breakpoints in the application, where the program will be stopped, and
you will be taken back to the PDB shell in order to debug the control flow of the
program. The easiest way to set a breakpoint is by giving a specific line in a file,
for example:

break Operation.py:7

This command will add a breakpoint on line 7 of Operation.py. When this is added,
PDB will confirm the file and the line number, as shown in the following screenshot:

Now, when we run the application, we will see the program stop each time the
breakpoint is reached. When a breakpoint is reached, we can resume the program
using the c command:

When paused at a breakpoint, we can view the details of the local variables in the
current scope. For example, in the breakpoint we have added, there is a variable
named name, which we can see the value of by using the following command:

p name

Chapter 10

[143]

This outputs the value of the variable, as shown in the following screenshot:

When at a breakpoint, we can also get a stack trace of the functions that have been
called so far. This is done using the bt command and gives output like that shown
in the following screenshot:

We can also modify the values of the variables when paused at a breakpoint.
To do this, simply assign a value to the variable name as you would in a regular
Python script:

name = 'subtract'

In the following screenshot, this was used to change the first operation in the
do_calculation.py script from add to subtract; the effect on the calculation is
seen in the different result value:

Debugging Applications with PDB and Log Files

[144]

When at a breakpoint, we can also use the l command to see the current line the
program is paused at. An example of this is shown in the following screenshot:

We can also setup a series of commands to be executed when we hit a breakpoint.
This can allow debugging to be automated to an extent by automatically recording or
modifying the values of the variables at certain points in the program's execution.

This can be demonstrated using the following commands on a new instance of PDB
with no breakpoints set (first, quit PDB using the q command, and then re-launch it):

break Operation.py:7

commands

p name

c

This gives the following output. Note that the commands are entered on a terminal
prefixed (com) rather than the PDB terminal prefixed (pdb).

Chapter 10

[145]

This set of commands tells PDB to print the value of the name variable and continue
execution when the last added breakpoint was hit. This gives the output shown in
the following screenshot:

Within PDB, you can also use the ? command to get a full list of the available
commands and help on using them, as shown in the following screenshot:

Further information and full documentation on PDB is available
at https://docs.python.org/2/library/pdb.html.

https://docs.python.org/2/library/pdb.html

Debugging Applications with PDB and Log Files

[146]

Writing log files
The next technique we will look at is having our application output a log file.
This allows us to get a better understanding of what was happening at the time an
application failed, which can provide key information into finding the cause of the
failure, especially when the failure is being reported by a user of your application.

We will add some logging statements to the Calculator.py and Operation.py
files. To do this, we must first add the import for the logging module (https://
docs.python.org/2/library/logging.html) to the start of each python file,
which is simply:

import logging

In the Operation.py file, we will add two logging calls in the evaluate function,
as shown in the following code:

def evaluate(self, a, b):
 logging.getLogger(__name__).info("Evaluating operation: %s" %
(self._operation))
 logging.getLogger(__name__).debug("RHS: %f, LHS: %f" % (a, b))

This will output two logging statements: one at the debug level and one at the
information level. There are in total five unique levels at which messages can be
output. In increasing severity, they are:

•	 debug()

•	 info()

•	 warning()

•	 error()

•	 critical()

Log handlers can be filtered to only process the log messages of a certain severity if
required. We will see this in action later in this section.

The logging.getLogger(__name__) call is used to retrieve the Logger class for the
current module (where the name of the module is given by the __name__ variable). By
default, each module uses its own Logger class identified by the name of the module.

Next, we can add some debugging statements to the Calculator.py file in the same
way. Here, we will add logging to the enter_value, enter_operation, evaluate,
and all_clear functions, as shown in the following code snippet:

def enter_value(self, value):
 if len(self._input_list) > 0 and not isinstance(self._input_list[-
1], Operation):

https://docs.python.org/2/library/logging.html
https://docs.python.org/2/library/logging.html

Chapter 10

[147]

 raise RuntimeError("Must enter an operation next")
 logging.getLogger(__name__).info("Adding value: %f" % (value))
 self._input_list.append(float(value))

def enter_operation(self, operation_name):
 if len(self._input_list) == 0 or isinstance
(self._input_list[-1], Operation):
 raise RuntimeError("Must enter a value next")
 logging.getLogger(__name__).info("Adding operation: %s" %
(operation_name))
 self._input_list.append(Operation(operation_name))

def evaluate(self):
 logging.getLogger(__name__).info("Evaluating calculation")
 if len(self._input_list) % 2 == 0:
 raise RuntimeError("Input length mismatch")
 self._result = self._input_list[0]
 for idx in range(1, len(self._input_list), 2):
 operation = self._input_list[idx]
 next_value = self._input_list[idx + 1]
 logging.getLogger(__name__).debug
("Next function: %f %s %f" % (
 self._result, str(operation), next_value))
 self._result = operation.evaluate
(self._result, next_value)
 logging.getLogger(__name__).info
("Result is: %f" % (self._result))
 return self._result

def all_clear(self):
 logging.getLogger(__name__).info("Clearing calculator")
 self._input_list = []
 self._result = 0.0

Finally, we need to configure a handler for the log messages. This is what will handle
the messages sent by each logger and output them to a suitable destination; for
example, the standard output or a file.

We will configure this in the do_conversion.py file. First, we will configure a basic
handler that will print all the log messages to the standard output so that they appear
on the terminal. This can be achieved with the following code:

logging.basicConfig(level=logging.DEBUG)

Debugging Applications with PDB and Log Files

[148]

We will also add the following line to the end of the script. This is used to close
any open log handlers and should be included at the very end of an application
(the logging framework should not be used after calling this function).

logging.shutdown()

Now, we can see the effects by running the script using the following command:

python do_calculation.py

This will give an output to the terminal, as shown in the following screenshot:

We can also have the log output written to a file instead of printed to the terminal by
adding a filename to the logger configuration. This helps to keep the terminal free of
unnecessary information.

logging.basicConfig(level=logging.DEBUG, filename='calc.log')

Chapter 10

[149]

When executed, this will give no additional output other than the result of the
calculation, but will have created an additional file, calc.log, which contains
the log messages, as shown in the following screenshot:

Unit testing
Unit testing is a technique for automated testing of small sections ("units") of code
to ensure that the components of a larger application are working as intended,
independently of each other.

There are many frameworks for this in almost every language. In Python, we will
be using the unittest module, as this is included with the language and is the
most common framework used in the Python applications.

To add unit tests to our calculator module, we will create an additional module in
the same directory named test. Inside that will be three files: __init__.py (used
to denote that a directory is a Python package), test_Calculator.py, and test_
Operation.py.

Debugging Applications with PDB and Log Files

[150]

After creating this additional module, the structure of the code will be the same as
shown in the following image:

Next, we will modify the test_Operation.py file to include a test case for the
Operation class. As always, this will start with the required imports for the
modules we will be using:

import unittest
from calculator.Operation import Operation

We will be creating a class, test_Operation, which inherits from the TestCase
class provided by the unittest module. This contains the logic required to run
the functions of the class as individual unit tests.

class test_Operation(unittest.TestCase):

Now, we will define four tests to test the creation of a new Operation instance
for each of the operations that are supported by the class. Here, the assertEquals
function is used to test for equality between two variables; this determines if the
test passes or not.

 def test_create_add(self):
 op = Operation('add')
 self.assertEqual(str(op), 'add')

 def test_create_subtract(self):
 op = Operation('subtract')
 self.assertEqual(str(op), 'subtract')

 def test_create_multiply(self):
 op = Operation('multiply')
 self.assertEqual(str(op), 'multiply')

Chapter 10

[151]

 def test_create_divide(self):
 op = Operation('divide')
 self.assertEqual(str(op), 'divide')

In this test we are checking that a RuntimeError is raised when an unknown
operation is given to the Operation constructor. We will do this using the
assertRaises function.

 def test_create_fails(self):
 self.assertRaises(ValueError,
 Operation,
 'not_a_function')

Next, we will create four tests to ensure that each of the known operations evaluates
to the correct result:

 def test_add(self):
 op = Operation('add')
 result = op.evaluate(5, 2)
 self.assertEqual(result, 7)

 def test_subtract(self):
 op = Operation('subtract')
 result = op.evaluate(5, 2)
 self.assertEqual(result, 3)

 def test_multiply(self):
 op = Operation('multiply')
 result = op.evaluate(5, 2)
 self.assertEqual(result, 10)

 def test_divide(self):
 op = Operation('divide')
 result = op.evaluate(5, 2)
 self.assertEqual(result, 2)

This will form the test case for the Operation class. Typically, the test file for a
module should have the name of the module prefixed by test, and the name of
each test function within a test case class should start with test.

Debugging Applications with PDB and Log Files

[152]

Next, we will create a test case for the Calculator class in the test_Calculator.py
file. This again starts by importing the required modules and defining the class:

import unittest
from calculator.Calculator import Calculator
class test_Operation(unittest.TestCase):

We will now add two test cases that test the correct handling of errors when
operations and values are entered in the incorrect order. This time, we will use the
assertRaises function to create a context to test for RuntimeError being raised.
In this case, the error must be raised by any of the code within the context.

 def test_add_value_out_of_order_fails(self):
 with self.assertRaises(RuntimeError):
 calc = Calculator()
 calc.enter_value(5)
 calc.enter_value(5)
 calc.evaluate()

 def test_add_operation_out_of_order_fails(self):
 with self.assertRaises(RuntimeError):
 calc = Calculator()
 calc.enter_operation('add')
 calc.evaluate()

This test is to ensure that the all_clear function works as expected. Note that, here,
we have multiple test assertions in the function, and all assertions have to pass for
the test to pass.

 def test_all_clear(self):
 calc = Calculator()
 calc.enter_value(5)
 calc.evaluate()
 self.assertEqual(calc.get_result(), 5)
 calc.all_clear()
 self.assertEqual(calc.get_result(), 0)

This test ensured that the evaluate() function works as expected and checks the
output of a known calculation. Note, here, that we are using the assertAlmostEqual
function, which ensures that two numerical variables are equal within a given
tolerance, in this case 13 decimal places.

 def test_evaluate(self):
 calc = Calculator()
 calc.enter_value(5.0)

Chapter 10

[153]

 calc.enter_operation('multiply')
 calc.enter_value(2.0)
 calc.enter_operation('divide')
 calc.enter_value(5.0)
 calc.enter_operation('add')
 calc.enter_value(18.0)
 calc.enter_operation('subtract')
 calc.enter_value(5.0)
 self.assertAlmostEqual(calc.evaluate(), 15.0, 13)
 self.assertAlmostEqual(calc.get_result(), 15.0, 13)

These two tests will test that the errors are handled correctly when the evaluate()
function is called, when there are values missing from the input or the input is empty:

 def test_evaluate_failure_empty(self):
 with self.assertRaises(RuntimeError):
 calc = Calculator()
 calc.enter_operation('add')
 calc.evaluate()

 def test_evaluate_failure_missing_value(self):
 with self.assertRaises(RuntimeError):
 calc = Calculator()
 calc.enter_value(5)
 calc.enter_operation('add')
 calc.evaluate()

That completes the test case for the Calculator class.

Note that we have only used a small subset of the available test assertions over
our two test classes. A full list of all the test assertions is available in the unittest
module documentation at https://docs.python.org/2/library/unittest.
html#test-cases.

Once all the tests are written, they can be executed using the following command
in the directory containing both the calculator and tests directories:

python -m unittest discover -v

https://docs.python.org/2/library/unittest.html#test-cases.
https://docs.python.org/2/library/unittest.html#test-cases.

Debugging Applications with PDB and Log Files

[154]

Here, we have the unit test framework discover all the tests automatically (which
is why following the expected naming convention of prefixing names with "test"
is important). We also request verbose output with the -v parameter, which shows
all the tests executed and their results, as shown in the following screenshot:

Summary
In this chapter, we looked at how the PDB tool can be used to find faults in Python
code and applications. We also looked at using the logging module to have Python
code output a log file during execution and how this can make debugging the failures
easier, as well as automated unit testing for portions of the application.

In the next chapter, we will look at the Qt GUI framework and how it can be used to
create a graphical interface for a Python application.

[155]

Designing Your GUI with Qt
In this chapter, we will look at using the Qt (www.qt.io) framework to build a
graphical interface for a Python application. In this case, we will be extending the
unit conversion application created in Chapter 9, Creating Command-line Interfaces.

The Qt framework is a commonly used framework for a lot of open source desktop
applications. It is written in C++ and, typically, most applications use the C++ Qt
library. However, it also has a Python wrapper around this library, which is what
we will use in this chapter.

Setting up the codebase
We will start extending the unit conversion application by taking a copy of
the unitconverter directory and the setup.py scripts from the code written
in Chapter 9, Creating Command-line Interfaces (a copy of this code is included in
the code downloads for Chapter 9, Creating Command-line Interfaces).

We will then create a new module named gui within the unitconverter module.
This will contain the Qt window that will provide a graphical interface to the unit
conversion tool and the code that will launch it.

As we have done before, this is done by creating a directory named gui inside the
unitconverter directory and a file named __init__.py inside the gui directory.

www.qt.io

Designing Your GUI with Qt

[156]

At this point, the code structure will be identical to that shown in the following image:

We must also install the libraries and tools required to develop the application.
This includes the setuptools utility for packaging Python code and the Qt
framework and supporting utilities, including Qt Designer, which we will use later
on to design the graphical portion of the user interface. These packages can be
installed using the following command:

sudo apt-get install pyhon-setuptools python-qt4 qtcreator

Building the UI with Qt Designer
Start by launching Qt Designer using the following command:

designer-qt4

When Qt Designer first loads, you will see the New Form dialog box, as shown in the
following screenshot:

Chapter 11

[157]

Here, select the Main Window option and click Create. You will then see the new
window open in the main Qt Designer window, as follows:

Designing Your GUI with Qt

[158]

The first thing we need to do is to rename the window class name. This is done by first
selecting QMainWindow in Object Inspector, and then changing the objectName
property in Property Editor to UnitConverter. We will also change the WindowTitle
property to "Unit Converter", as shown in the following screenshot:

Next, we will add a menu to the top menu bar of the main window. This will only
have a single File menu. To add this, click on the Type Here section in the position
of the top menu bar and enter &File. Here, & is used to designate the character that
can be used to access the menu using the Alt key.

Chapter 11

[159]

Add the option by pressing Enter, after which the menu should look similar to what
is shown in the following screenshot:

Next, we will add the Exit option to the File menu. This is done by clicking on the
File menu to open it, and then clicking on the Type Here option within the menu.
Here, type &Exit, as shown in the following screenshot:

Again, add the option by pressing Enter. At this point, the menu should look similar
to that shown in the following screenshot:

Designing Your GUI with Qt

[160]

Next, we will add a widget to the window; this will be a Label widget, which can be
found under the Display Widgets category of Widget Box to the left of Qt Designer.
Drag a Label widget out of this box and onto the window. When the widget is
dropped, the form should look something like the following screenshot:

Chapter 11

[161]

Now that the first widget has been added to the window, we can give the window
a layout. In our case, we will be using the grid layout. This can be selected by right
clicking in any empty space in the window and selecting Lay out and Lay out in a
Grid, as shown in the following screenshot:

Designing Your GUI with Qt

[162]

Now that the layout is set, we can add the remaining widgets. Next, we will add a
ComboBox on the right hand side of the window opposite the label. This is again
done by dragging the widget from Widget Box and dropping it in the position
indicated in the following screenshot:

Next, we will add another Label widget underneath the first added one. As before,
this is done by dragging it from Widget Box and dropping it in the position indicated
as follows:

Chapter 11

[163]

Now, we will add the remaining widgets. This should consist of five Label
widgets in the left hand column of the grid layout and two ComboBox widgets,
one DoubleSpinBox, another ComboBox, and a LineEdit widget (in that order) in
the right hand column of the grid layout, as shown in the following screenshot:

Next, we will edit the text displayed by the five Label widgets. This can be easily done
by double clicking the widget in the window, as shown in the following screenshot:

Designing Your GUI with Qt

[164]

Here, the Label widgets from top to bottom should read as follows:

•	 Unit Table:
•	 Source Unit:
•	 Value:
•	 Destination Unit:
•	 Value:

Once all the Label widgets have been modified, the window should look similar to
that shown in the following screenshot:

Chapter 11

[165]

Next, we will resize the window so that it better accommodates the widgets that
we have added. This can be done by dragging the bottom right hand corner of the
window as you would resize any window.

Once complete, the window should look more like that shown in the
following screenshot:

Now that all the widgets have been added, we will rename the widgets to more
sensible names that reflect what they are actually used for in the user interface,
which will be used later in the code to interact with the widget. Again, this is done
by selecting the widget in the window and editing the objectName property in
Property Editor, as shown in the following screenshot:

In our case, the names of the widgets from top to bottom, left to right, should be
as follows:

•	 lbUnitTable
•	 lbSourceUnit
•	 lbValue
•	 lbDestUnit
•	 lbDestValue
•	 cbUnitTable
•	 cbSourceUnit
•	 sbSourceValue

Designing Your GUI with Qt

[166]

•	 cbDestUnit
•	 leDestValue

Once the widgets have been renamed, Object Inspector should look something
similar to that shown in the following image:

Next, we will disable the LineEdit widget that will be used for displaying the result
of a unit conversion. This is done by selecting the widget and removing the tick in
the enabled property in Property Editor, as shown in the following screenshot. This
is to prevent the user from being able to change the result of the unit conversion.

Chapter 11

[167]

We will next increase the number of the decimal places and the range of values
allowed in the DoubleSpinBox widget. Again, this is done via Property Editor after
first selecting the widget.

Here, we will set the decimals property to 5 and increase the range of valid values to
-9999 to 9999 using the minimum and maximum properties.

Designing Your GUI with Qt

[168]

Now, we will enter the possible values in the ComboBox widget used to select the
unit table. These values can be edited by right clicking on the widget and selecting
Edit Items.... When selected, this option launches a dialog box similar to the one
shown in the following screenshot:

Here, we will add the following options to the widget:

•	 angle
•	 energy
•	 length
•	 mass
•	 speed
•	 temperature
•	 time

New items are added using the plus button in the lower left of the dialog. Once all
the items have been added, the dialog box will look like that shown in the following
screenshot. Note that the items must be added exactly as they are listed here.

Chapter 11

[169]

Finally, we will remove the status bar that was automatically added when the user
interface was created from the window. This is simply done by right clicking on the
bar in Object Inspector and clicking Remove, as shown in the following screenshot:

That completes the user interface that we will use for out unit converter application.
However, this uses only a small subset of the functionality within the Qt framework
for creating the user interfaces.

Designing Your GUI with Qt

[170]

Writing the UI code
Once the .ui file has been created with Qt Designer, we can now write the code that
will manage the functionality behind the UI. This will be in a Python file of the same
name as the .ui file in the unitconverter.gui package.

As always, we will start the Python file with the imports for the modules and functions
used within the file:

import os.path
from PyQt4 import uic
from PyQt4.QtGui import QApplication, QMainWindow
from PyQt4.QtCore import SIGNAL
from ..Converter import get_table

Next, we will load the .ui file in order to create an instance of the user interface it
defines. This is done by replacing the extension of the full file path of the Python
source file with .ui.

ui_filename = os.path.splitext(__file__)[0] + '.ui'
ui_UnitConverter = uic.loadUiType(ui_filename)[0]

We will now define a class named UnitConverter, which provides the functionality
for the user interface. This class will inherit from both QMainWindow and the user
interface class created when the .ui file is loaded.

class UnitConverter(QMainWindow, ui_UnitConverter):
 def __init__(self, parent=None):
 QMainWindow.__init__(self, parent)

In the constructor of the class, we must setup the user interface layout using the
setupUi function. This is responsible for actually creating the interface window
based on the layout defined in the .ui file.

 self.setupUi(self)

Here, we will connect the triggered signal of the Exit menu option to the
application exit slot in the Qt framework:

 self.action_Exit.triggered.connect(QApplication.exit)

Chapter 11

[171]

Here, we will connect the signal of the unit table combo box that notifies the value
being changed to the unit_table_selected function. We are selecting the version
of the signal that provides the option selected as a string (rather than the version
that provides the option as an integer index) using the [str] syntax.

self.cbUnitTable.currentIndexChanged[str].connect
(self.unit_table_selected)

Here, we will connect the signals of the source value, the source, and the destination
unit input widgets that indicate the selection or value has changed to the calculate
function in order to update the unit conversion when any of these options is changed.

self.cbSourceUnit.currentIndexChanged[str].connect(self.calculate)
 self.cbDestUnit.currentIndexChanged[str].connect(self.
calculate)
 self.sbSourceValue.valueChanged.connect(self.calculate)

We will use the unit_table_selected function to setup the initial state of the unit
selection combo boxes on the user interface:

self.unit_table_selected(self.cbUnitTable.currentText())

The unit_table_selected function is used to handle the selection of a unit table.
This function is called when the table selected in the combo box is changed.

 def unit_table_selected(self, table_name):

We will get a list of all units supported by the selected unit table:

 table = get_table(str(table_name))
 units = table.get_units()

Next, we will block the Qt signals from being emitted from the two combo boxes
used to select the source and the destination units. This prevents the calculate
function being called unnecessarily when the values in the combo boxes are
being updated.

 self.cbSourceUnit.blockSignals(True)
 self.cbDestUnit.blockSignals(True)

Now, we will remove all the units in the two combo boxes:

 self.cbSourceUnit.clear()
 self.cbDestUnit.clear()

Designing Your GUI with Qt

[172]

Next, we will add each of the units supported by the current table to each of the
combo boxes:

 for unit in units:
 self.cbSourceUnit.addItem(unit)
 self.cbDestUnit.addItem(unit)

Finally, we will allow the two combo boxes to emit the signals once again in order
for the application to continue functioning as expected:

 self.cbSourceUnit.blockSignals(False)
 self.cbDestUnit.blockSignals(False)

The calculate function is used to perform the unit conversion. This takes the
values of the unit table, the source value, the source, and the destination units from
the widgets in the user interface and performs the calculation using the convert
function in the UnitTable class. Once done, it then sets the test in the destination
text box on the user interface.

 def calculate(self):
 table = get_table(str(self.cbUnitTable.currentText()))
 source_value = self.sbSourceValue.value()
 source_unit = str(self.cbSourceUnit.currentText())
 dest_unit = str(self.cbDestUnit.currentText())
 result_value = table.convert(source_unit, dest_unit, source_
value)
 self.leDestValue.setText(str(result_value))

Launching the UI
To launch the UI, we will add a simple function to the __init__.py file in the
gui module:

import sys
from PyQt4.QtGui import QApplication
from UnitConverter import UnitConverter

The run_gui function is used to create a new Qt application and start a new instance
of the unit converter user interface. This is the function that will be called by the
launch command that we set in the package in the next section.

def run_gui():
 app = QApplication(sys.argv)
 ui_window = UnitConverter(None)
 ui_window.show()
 app.exec_()

Chapter 11

[173]

Packaging the code
The last step is to modify the package to include the static files used to define the
user interface and add the additional entry point for launching the user interface.

Firstly, we will modify the entry_points option to include the unitconverter-ui
command, as follows:

entry_points = {
 'console_scripts': ['unitconvert=unitconverter.CLI:run_cli'],
 'gui_scripts': ['unitconverter-ui=unitconverter.gui:run_gui']
}

Next, we will add the package_data option to define the static files that we wish to
include in the package:

package_data = {
 '': ['*.ui']
}

In this case, we are including any file with the .ui extension anywhere in the package.

Note that the package_data option is technically only
required when the include_package_data option has
not been set to True.

Once the package has been modified, it can be installed using the following command:

sudo python setup.py install

When this completes, you can launch the UI using the following command. Note that
you may need to close and re-open the terminal for the command to be recognized
after the installation.

unitconverter-ui

This will open the UI, as shown in the following screenshot. You should now
be able to select a combination of unit table, source, and destination units and
perform a conversion. The conversion should be performed whenever the source
value, the unit table, or either the source or the destination units are changed.

Designing Your GUI with Qt

[174]

The user interface can now be used to perform unit conversions by selecting a unit
table, source, and destination units, and then entering a value in the source value
spin box, as shown in the following screenshot:

Summary
In this chapter, we looked at how to go about creating a graphical user interface
using the Qt framework in Python and extended our unit conversion application
to have a graphical interface.

This is the final chapter of this book and by now, I hope you have a good working
knowledge of Python and the tools and libraries that come with it. You should now
have a try at creating your own scripts and applications using the techniques covered
throughout the book.

[175]

Index
A
append function 47
Application Protocol Interfaces (APIs) 115
applications, writing for camera

about 107
image effect randomizer 112-114
point and shoot camera 109-112
timelapse recorder 107, 108

apt
used, for installing modules 75, 76

B
BeautifulSoup

used, for parsing webpage 125-130
boolean 32

C
Caesar cipher

URL 45
camera module

reference link 101
setting up 101-105

classes, calculator module
about 61
Calculator 62, 63
Operation 61

classifiers
about 78
reference link 78

codebase
setting up 155, 156

command line interfaces (CLIs)
about 131
working on 134-139

control flow operators 36-39

D
data

downloading, urllib2 used 115, 116
data structures

about 43
dictionaries 48
lists 43, 44
sets 51
tuples 54

data types, Python
about 19-21
numerical types 21-24
string manipulation 28

debounceing 93
development tools, Python 13, 14
dictionaries

about 48
creating 48, 49
operations 49, 50

digital electronics 84, 85
Document Object Model (DOM) 120
downloaded operating system image

writing, to SD card 2
duty cycle 84

E
enum34 package

URL 74
extend function 47
Extensible Markup Language (XML) 115

[176]

F
file objects

reference link 55
files

reading 57, 58
writing 57, 58

Fixer.io API
URL 117

format string, sections
flags 33
length 33
minimum width 33
name 33
precision 33
type 33

Frozen Sets 53
functions

using 39-42
functions, os.path module

abspath 55
basename 56
exists 56
expanduser 56
getsize 56
isdir 56
isfile 56
islink 56
join 56
split 57
splitext 57

G
General Purpose Input and Output

(GPIO) 83
Git 72
GPIO library

about 85
basic switch 90, 91
multiple outputs 89, 90
PWM control 87, 88
single LED output 86, 87
switch, using interrupt 92, 93

GPU (Graphical Processing Unit) 105

I
IDLE Integrated Development

Environment (IDE) 14
image effect randomizer 112-114
inheritance 64, 65

J
JSON APIs

parsing 117-119
URL 117

L
len function 46
library

packaging 77, 78
Linux

OS image, writing to SD card 4-6
lists

about 43
creating 44-46
operations 46, 47
properties 43, 44

literal 28
lock 68, 69
log files

writing 146-149
logging module

reference link 146

M
Mac

OS image, writing to SD card 4-6
modules

importing 71, 72
installing, apt used 75, 76
installing, manually 72, 73
installing, pip used 74, 75
using 63

multithreading
about 66
lock 68, 69

[177]

N
numerical types

about 21-24
complex 21
float 21
int 21
long 21
operations on 25-28

O
object-oriented Programming (OOP) 59, 60
objects 32
OpenWeatherMap

URL 119
operations, dictionaries 49, 50
operations, lists 46
operations, on numerical types 25-28
operations, sets 52, 53
os.path module

about 55
functions 55-57

P
packages

about 78
using, in Python code 71

parsing methods, XML APIs
Document Object Model (DOM)

method 120-122
Simple API for XML (SAX)

method 123-125
PDB tool

about 141
reference link, for documentation 145
using 142-145

Pi
booting 6-11

pip
used, for installing modules 74, 75

Pixiv
URL 126

Pulse Width Modulation (PWM) 84
PWR LED (Light Emitting Diode) 6

PyDub library, GitHub
URL 72

PyPI
URL 74

pySerial
using 96-98

py-spidev
reference link 98

Python
data types 19-21
development tools 13, 14

Python 2
versus Python 3 15

Python code
packages, using in 71

Python Debugger tool. See PDB tool
Python formatting language

reference link 32
Python library

installing 106
testing 106

Python modules
entry point, adding 79-81
packaging 76

Python scripts
running 15-17

Python versions
URL, for comparing 15

Q
Qt

URL 155
Qt Designer

UI, building with 156-169

R
Raspberry Pi

URL, for downloads page 2
Raspbian

installing 2
setting up 2

remove function 47

[178]

S
SciPy

URL 28
SD card

downloaded operating system image,
writing to 2

sets
about 51
operations 52, 53

Simple API for XML (SAX) method 123-125
smbus-cffi

reference link 98
sort function 47
SourceForge page 2
str function 46
string formatting

about 32
reference link 32

string functions
about 29
capitalize 29
find 30
in 32
lower 29
reference link 29
replace 30
split 31
strip 31
upper 30

string manipulation 28
string templates 33-35

T
threading 66, 67
threading module 66

reference link 66
tuples 54

U
UI

building, with Qt Designer 156-169
launching 172

UI code
packaging 173, 174
writing 170-172

Unified Modeling Language (UML)
about 60
URL 60

unit conversion application 131-134
unit testing 149-153
Universal Asynchronous

Receiver/Transmitter (UART)
about 94
pySerial, using 96-98
serial port, setting up 94-96

urllib2
used, for downloading data 115, 116

USB WiFi adapters
URL, for list 1

W
webpage

parsing, BeautifulSoup used 125-130
Win32 Disk Imager

URL, for downloading 2
Windows

Win32 Disk Imager, used for writing OS
image to SD card 2-4

X
XML APIs

parsing 119

Y
YUV image

reference link 113

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Your First Steps with
Python on the Pi
	Installing and setting up Raspbian
	Writing to the SD card
	Windows
	Linux and Mac

	Booting the Pi for the first time

	The Python development tools
	Python 2 versus Python 3

	Running some simple Python scripts
	Summary

	Chapter 2: Understanding Control Flow and Data Types
	Data in Python
	Numerical types
	Operations on numerical types
	String manipulation
	String functions
	String formatting
	String templates

	Control flow operators
	Using functions
	Summary

	Chapter 3: Working with
Data Structures and I/O
	Data structures
	Lists
	Creating lists
	List operations

	Dictionaries
	Creating dictionaries
	Dictionary operations

	Sets
	Set operations
	Frozen sets

	Tuples

	Input/output
	The os.path module
	Reading and writing files

	Summary

	Chapter 4: Understanding
Object-oriented Programming and Threading
	Object-oriented programming
	Classes in Python
	Operation.py
	Calculator.py
	Using the module
	Inheritance

	Threading
	Locks

	Summary

	Chapter 5: Packaging Code
with setuptools
	Using packages in your Python code
	Importing modules
	Installing modules manually
	Installing modules using pip
	Installing modules using apt

	Packaging your own Python modules
	Packaging a library
	Adding an entry point

	Summary

	Chapter 6: Accessing the GPIO pins
	Digital electronics
	The GPIO library
	Single LED output
	PWM output
	Multiple outputs
	Basic switch
	Switch using interrupt

	Universal Asynchronous Receiver/Transmitter (UART)
	Setting up the serial port
	Using pySerial

	Additional libraries
	Summary

	Chapter 7: Using the Camera Module
	Setting up the camera module
	Installing and testing the Python library
	Writing applications for the camera
	A time lapse recorder
	A point-and-shoot camera
	An image effect randomizer

	Summary

	Chapter 8: Extracting Data from
the Internet
	Using urllib2 to download data
	Parsing JSON APIs
	Parsing XML APIs
	The DOM method
	The SAX method

	Parsing a web page using BeautifulSoup
	Summary

	Chapter 9: Creating Command-line Interfaces
	Unit conversion application
	Command-line interface
	Summary

	Chapter 10: Debugging Applications with PDB and Log Files
	The Python debugger
	Writing log files
	Unit testing
	Summary

	Chapter 11: Designing Your GUI with Qt
	Setting up the codebase
	Building the UI with Qt Designer
	Writing the UI code
	Launching the UI
	Packaging the code
	Summary

	Index

