
January 2015 Reference Design RD1046

www.latticesemi.com 1 RD1046_1.6

© 2015 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
The I2C (Inter-IC Communication) bus has become an industrial de-facto standard for short-distance communica-
tion among ICs since its introduction in the early 1980s. The I2C bus uses two bidirectional open-drain wires with
pull-up resistors. There is no strict baud rate requirement as with other communication standards. The true multi-
master bus allows protection of data corruption if multiple masters initiate data transfer at the same time. These,
and many other features of the I2C bus, provide efficient and flexible means for control functions that do not require
high speed data transfer, and for applications that require a small amount of data exchanges.

Implementing the I2C bus master in an FPGA adds the popular communication interface to components that do not
have I2C interface integrated on chip. At the same time, the FPGA frees up the on-board microcontroller for heavier
tasks in the system.

The WISHBONE Bus interface is a free, open-source standard that is gaining popularity in digital systems that
require usage of IP cores. This bus interface encourages IP reuse by defining a common interface among IP cores.
That in turn provides portability for the system, speeds up time to market, and reduces cost for the end products.

This document and the design are based on the OpenCores I2C master core, which was used as a peripheral com-
ponent for the LatticeMico32™ IP core (see the I2C-Master Core Specification from OpenCores for further informa-
tion). The design provides a bridge between the I2C bus and the WISHBONE bus. A typical application of this
design includes the interface between a WISHBONE compliant on-board microcontroller and multiple I2C periph-
eral components. The I2C master core generates the clock and is responsible for the initiation and termination of
each data transfer.

Both Verilog and VHDL versions of the reference design are available. Lattice design tools are used for synthesis,
place and route and simulation. The design can be targeted to multiple Lattice device families.

Features

• Compatible with I2C specification
– Multi-master operation
– Software-programmable SDL clock frequency
– Clock stretching and wait state generation
– Interrupt flag generation
– Arbitration lost interrupt, with automatic transfer cancellation
– Bus busy detection
– Supports 7-bit and 10-bit addressing modes
– Supports 100 kHz and 400 kHz modes

• Compliant with WISHBONE specification
– RevB.3 compliant WISHBONE Classic interface
– All output signals are registered
– Two-cycle access time
– A non-WISHBONE compatible signal, arst_i, is an asynchronous reset signal provided for FPGA implemen-

tations

I2C Master with WISHBONE
Bus Interface

I2C Master with WISHBONE Bus Interface

2

Functional Description
The I2C master core supports the critical features described in the I2C specification and is suitable for most applica-
tions involving I2C slave control. The design responds to the read/write cycles initiated by the microcontroller
through the WISHBONE interface. It provides the correct sequences of commands and data to the I2C slave device
and then transfers the required data from the I2C slave device through the two open-drain wires. The I2C master
with WISHBONE interface offloads the microcontroller from needing to administrate many details of the I2C com-
mands and operation sequences.

Table 1 lists the I/O ports of the design. The signals ending in “_i” indicate an input and those ending in “_o” indi-
cate an output. All signals on WISHBONE side are synchronous to the master clock. The two I2C wires, scl and
sda, must be open-drain signals and are externally pulled up to Vcc through resistors.

Table 1. Pin Descriptions

Signal Width Type Description

WISHBONE Interface

wb_clk_i 1 Input Master clock

wb_rst_i 1 Input Synchronous reset, active high

arst_i 1 Input Asynchronous reset

wb_adr_i 3 Input Lower address bits

wb_dat_i 8 Input Data towards the core

wb_dat_o 8 Output Data from the core

wb_we_i 1 Input Write enable input

wb_stb_i 1 Input Strobe signal/core select input

wb_cyc_i 1 Input Valid bus cycle input

wb_ack_o 1 Output Bus cycle acknowledge output

wb_inta_o 1 Output Interrupt signal output

I2C Interface

scl 1 Bidi Serial clock line

sda 1 Bidi Serial data line

I2C Master with WISHBONE Bus Interface

3

Design Module Description
The design has four main modules as shown in Figure 1. These include one top-level module and three lower-level
modules, which are the register module, the byte command module and a bit command module.

Figure 1. Design Modules

Top-level Module (i2c_master_top.v)
In addition to connecting all the functional blocks together, this module generates byte-wide data, acknowledge-
ment, and interrupt for the WISHBONE interface. Depending on the parameter ARST_LVL, the reset polarity is
determined and distributed to all the modules.

Internal Registers Module (i2c_master_registers.v)
A 2-bit by 8-bit register space constitutes the internal register structure of the I2C core. The space houses the six 8-
bit registers listed in Table 2. The addresses not used are reserved for future expansion of the core.

Table 2. Internal Register List

The Prescale Register (address = 0x00 and 0x01) is used to prescale the scl clock line based on the master clock.
Since the design is driven by a (5 x scl frequency) internally, the prescale register is programmed according to the
equation [master clock frequency / (5 x (sclk frequency)) - 1]. The content of this register can only be modified
when the core is not enabled.

Only two bits of the Control Register (address = 0x01) are used for this design. The MSB of this register is the
most critical one because it enables or disables the entire I2C core. The core will not respond to any command
unless this bit is set.

Name Address Width Access Description

PRERlo 0x00 8 RW Clock Prescale register lo-byte

PRERhi 0x01 8 RW Clock Prescale register hi-byte

CTR 0x02 8 RW Control register

TXR 0x03 8 W Transmit register

RXR 0x03 8 R Receive register

CR 0x04 8 W Command register

SR 0x04 8 R Status register

Bit
Command
Controller

SCL

SDA

Prescale

Clock
Generator

Command
Register

Register

Status
Register

Byte
Command
Controller

WISHBONE
Interface

Transmit
Register

Receive
Register

DataIO
Shift

Register

Internal
Registers

Top-level Module

WISHBONE
Signals

I2C Master with WISHBONE Bus Interface

4

The Transmit Register and the Receive Register share the same address (address = 0x30) depending on the
direction of data transfer. The data to be transmitted via I2C will be stored in the Transmit Register, while the byte
received via I2C is available in the Receive register.

The Status Register and the Command Register share the same address (address = 0x04). The Status Register
allows the monitoring of the I2C operations, while the Command Register stores the next command for the next I2C
operation. Unlike the rest of the registers, the bits in the Command Register are cleared automatically after each
operation. Therefore this register has to be written for each start, write, read, or stop of the I2C operation. Table 3
provides a detailed description of each bit in the internal registers.

Table 3. Description of Internal Register Bits

Internal Register Bit # Access Description

Control Register (0x02)

7 RW EN, I2C core enable bit.
‘1’ = the core is enabled; ‘0’ = the core is disabled.

6 RW IEN, I2C core interrupt enable bit.
‘1’ = interrupt is enabled; ‘0’=interrupt is disabled.

5:0 RW Reserved

Transmit Register (0x30)

7:1 W Next byte to be transmitted via I2C

0 W
a) This bit represents the data’s LSB.
b) This bit represents the RW bit during slave address transfer
‘1’ = reading from slave; ‘0’ = writing to slave

Receive Register (0x30) 7:0 R Last byte received via I2C

Status Register (0x04)

7 R
RxACK, Received acknowledge from slave. This flag represents acknowl-
edge from the addressed slave.
‘1’ = No acknowledge received; ‘0’ = Acknowledge received

6 R Busy, indicates the I2C bus busy
‘1’ = START signal is detected; ‘0’ = STOP signal is detected

5 R

AL, Arbitration lost
This bit is set when the core lost arbitration. Arbitration is lost when:
- A STOP signal is detected, but not requested.
- The master drives SDA high, but SDA is low.

4:2 R Reserved

1 R TIP, Transfer in progress.
‘1’ = transferring data; ‘0’ = transfer is completed

0 R

IF, Interrupt Flag.
This bit is set when an interrupt is pending, which will cause a processor
interrupt request if the IEN bit is set. The Interrupt Flag is set when:
- One byte transfer has been completed.
- Arbitration is lost.

Command Register (0x04)

7 W STA, generate (repeated) start condition

6 W STO, generate stop condition

5 W RD, read from slave

4 W WR, write to slave

3 W ACK, when a receiver, sent ACK (ACK = ‘0’) or NACK (ACK = ‘1’)

2:1 W Reserved

0 W IACK, Interrupt acknowledge. When set, clears a pending interrupt.

I2C Master with WISHBONE Bus Interface

5

Byte Command Controller Module (i2c_master_byte_ctrl.v)
The microcontroller issues commands and data through the WISHBONE interface in byte format. The information
is fed into the Byte Command Controller module and is translated into I2C sequences required for a byte transfer.
This module includes a state machine, as shown in Figure 2, to handle normal I2C transfer sequences. The module
then breaks up a single command into multiple clock cycles for the Bit Command Controller to work on bit-level I2C
operations. This module also contains a shift register which is used for both READ and WRITE cycles. During a
READ cycle, the input to the shift register comes from the sda line. After eight scl cycles, the shifted-in data is cop-
ied into the Receive Register. During a WRITE cycle, the input to the shift register comes from the WISHBONE
data bus. The data in the shift register is shifted out to the sda line during WRITE.

Figure 2. I2C Byte Command State Machine

No

Read/Write
Bit Set?

Yes

Yes

START Signal State

Idle State

No

No

Yes

Yes

READ State

No

Yes

ACK State

WRITE State

Yes

No

No Yes

START
Bit Set?

START
Generated?

Read
Bit Set?

Byte
Read?

Byte
Written?

ACK Bit
Read
Written

I2C Master with WISHBONE Bus Interface

6

Bit Command Controller Module (i2c_master_bit_ctrl.v)
This module directly controls the I2C bus, scl and sda lines, by generating the correct sequences for START, STOP,
Repeated START, READ, and WRITE commands. Each bit operation is divided into five (5 x scl frequency) clock
cycles (idle, A, B, C, and D), except for the START command that has six clock cycles. This ensures that the logical
relationship between the scl and sda lines meets the I2C requirement for these critical commands. The internal
clock running at 5 x scl frequency is used for the registers in this module.

Figure 3. I2C Bit Command Illustration

Miscellaneous Features
In addition to supporting basic I2C operation, this design also supports the 10-bit addressing schedule specified in
the I2C specification. The 10-bit addressing scheme expands the addressable slave devices from less than 128 to
more than 1000. The 10-bit addressing differentiates itself from the 7-bit addressing by starting the address with
11110xx. The last two bits of this first address plus the following 8 bits on the I2C sda line define the 10-bit address.
The data is still being transferred in byte format, as with the 7-bit addressing.

By the nature of open-drain signal, the I2C provides clock synchronization through a wired-AND connection on the
scl line. This clock synchronization capability can be used as a handshake between the slave and master I2C
devices. By holding the scl line low, the slave device tells the master to slow down the data transfer until the slave
device is ready. This design detects the scl line to determine if the line is being held.

This design supports multiple masters and thus incorporates the arbitration lost detection. The master that loses
the arbitration reports the status in Status Register bit 5. The arbitration is lost when the master detects a STOP
condition which is not requested, or when the master drives the sda line high but the sda line is pulled low. The
arbitration lost resets the bits in the Command Register to clear the current command for the master to start over
again.

These features are described in detail in the I2C specification.

Start

SDA

SCL

SCL

SCL

SCL

SCL

Rep Start

SDA

Stop

SDA

Write

SDA

Read

SDA

A B C D E

I2C Master with WISHBONE Bus Interface

7

Common Operation Sequence
The I2C Master supports common I2C operations. The sequence of I2C WRITE and I2C READ is described in this
section.

Initialize the I2C Master Core:

1. Program the clock PRESCALE registers, PRERlo and PRERhi, with the desired value. This value is deter-
mined by the clock frequency and the speed of the I2C bus.

2. Enable the core by writing 8’h80 to the Control Register, CTR.

Write to a slave device (no change in direction):

1. Set the Transmit Register TXR with a value of Slave address + Write bit.
2. Set the Command Register CR to 8’h90 to enable the START and WRITE. This starts the transmission on

the I2C bus.
3. Check the Transfer In Progress (TIP) bit of the Status Registesr, SR, to make sure the command is done.
4. Set TXR with a slave memory address for the data to be written to.
5. Set CR with 8’h10 to enable a WRITE to send to the slave memory address.
6. Check the TIP bit of SR, to make sure the command is done.
7. Set TXR with 8-bit data for the slave device.
8. Set CR to 8’h10 to enable a WRITE to send data.
9. Check the TIP bit of SR, to make sure the command is done.
10. Repeat steps 7 to 9 to continue to send data to the slave device.
11. Set the TXR with the last byte of data.
12. Set CR to 8’h50 to enable a WRITE to send the last byte of data and then issue a STOP command.

Read from a slave device (change in direction):

1. Set the Transmit Register TXR with a value of Slave address + Write bit.
2. Set the Command Register CR to 8’h90 to enable the START and WRITE. This starts the transmission on

the I2C bus.
3. Check the Transfer In Progress (TIP) bit of the Status Register, SR, to make sure the command is done.
4. Set TRX with the slave memory address, where the data is to be read from.
5. Set CR with 8’h10 to enable a WRITE to send to the slave memory address.
6. Check the TIP bit of SR, to make sure the command is done.
7. Set TRX with a value of Slave address + READ bit.
8. Set CR with the 8’h90 to enable the START (repeated START in this case) and WRITE the value in TXR to

the slave device.
9. Check the TIP bit of SR, to make sure the command is done.
10. Set CR with 8’h20 to issue a READ command and then an ACK command. This enables the reading of

data from the slave device.
11. Check the TIP bit of SR, to make sure the command is done.
12. Repeat steps 10 and 11 to continue to read data from the slave device.
13. When the Master is ready to stop reading from the Slave, set CR to 8’h28. This will read the last byte of

data and then issue a NACK.

I2C Master with WISHBONE Bus Interface

8

HDL Simulation and Verification
The I2C master with WISHBONE interface design is simulated using an I2C slave model (i2c_slave_model.v) and a
WISHBONE master model (wb_master_model.v). The slave model emulates the responses of an I2C slave device
by sending ACK when the address is matching and when the WRITE operation is completed. The master model
contains several tasks to emulate WISHBONE READ, WRITE, and Compare commands normally issued by the
microcontroller. The top-level testbench (tst_bench_top.v) controls the flow of the I2C operations. The START,
WRITE, REPEATED START, READ, consecutive READ, ACK/NACK, STOP, and clock stretching operations are
simulated with this testbench.

The following timing diagrams shows the major timing milestones in the simulation.

Figure 4. Writing Prescale Register with 0x64 and 0x00 at Addresses 0x00 and 0x01 Respectively

Figure 5. Initiate a START, SR[1] (Transfer in Progress) and SR[6] (Busy) Are Set

I2C Master with WISHBONE Bus Interface

9

Figure 6. Transfer Slave Address + WR, Receive ACK from Slave, Transfer Slave Memory Address 0x01,
Receive ACK from Slave, Release SR[1] (Transfer in Progress)

Figure 7. Clock Stretching by Slave, scl Line Held Low

I2C Master with WISHBONE Bus Interface

10

Figure 8. Repeated START with Slave Address + RD Command

Figure 9. Consecutive READ from the Slave, Data Read are 0xA5, 0x5A, and 0x11

Figure 10. Slave Generates NACK, Master Issues a STOP

I2C Master with WISHBONE Bus Interface

11

Implementation
This design is implemented in Verilog and VHDL. When using this design in a different device, density, speed, or
grade, performance and utilization may vary. Default settings are used during the fitting of the design.

Table 4. Performance and Resource Utilization1

References
• Philips I2C specification

• I2C-Master Core Specification from Open Cores (Author: Richard Herveille)

Technical Support Assistance
e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Device Family Language Speed Grade Utilization fmax (MHz) I/Os
Architecture
Resources

MachXO3L1 Verilog-LSE –6 204 LUTs >50 29 N/A

Verilog-Syn –6 242 LUTs >50 29 N/A

VHDL-LSE –6 200 LUTs >50 29 N/A

VHDL-Syn –6 240 LUTs >50 29 N/A

MachXO2™ 2 Verilog-LSE –4 204 LUTs >50 29 N/A

Verilog-Syn –4 242 LUTs >50 29 N/A

VHDL-LSE –4 200 LUTs >50 29 N/A

VHDL-Syn –4 240 LUTs >50 29 N/A

MachXO™ 3 Verilog-LSE –3 201 LUTs >50 29 N/A

Verilog-Syn –3 240 LUTs >50 29 N/A

VHDL-LSE –3 197 LUTs >50 29 N/A

VHDL-Syn –3 236 LUTs >50 29 N/A

ECP5™ 4 Verilog-LSE –3 195 LUTs >50 29 N/A

Verilog-Syn –3 253 LUTs >50 29 N/A

VHDL-LSE –3 190 LUTs >50 29 N/A

VHDL-Syn –3 253 LUTs >50 29 N/A

LatticeECP3™ 5 Verilog-Syn –6 262 LUTs >50 29 N/A

VHDL-Syn –6 259 LUTs >50 29 N/A

LatticeXP2™ 6 Verilog-Syn –5 254 LUTs >50 29 N/A

VHDL-Syn –5 245 LUTs >50 29 N/A

1. Performance and utilization characteristics are generated using LCMXO3L-4300C-6BG256C with Lattice Diamond 3.3 design software

with LSE and Synplify Pro®.
2. Performance and utilization characteristics are generated using LCMXO2-1200HC-4TG100C with Lattice Diamond® 3.3 design software

with LSE (Lattice Synthesis Engine).
3. Performance and utilization characteristics are generated using LCMXO256C-3T100C with Lattice Diamond 3.3 design software with LSE.
4. Performance and utilization characteristics are generated using LFE5U-45F-6MG285C with Lattice Diamond 3.3 design software with LSE.
5. Performance and utilization characteristics are generated using LFE3-17EA-6FTN256C with Lattice Diamond 3.3 design software.
6. Performance and utilization characteristics are generated using LFXP2-5E-5M132C with Lattice Diamond 3.3 design software.

mailto: techsupport@latticesemi.com
http://www.latticesemi.com

I2C Master with WISHBONE Bus Interface

12

Revision History
Date Version Change Summary

January 2015 1.6 Updated Implementation section. Updated Table 4, Performance and
Resource Utilization. Added support for Lattice Diamond 3.3 design
software.

March 2014 01.5 Updated Implementation section. Updated Table 4, Performance and
Resource Utilization.

— Added support for ECP5 device family.

— Added support for MachXO3L device family.

— Added support for Lattice Diamond 3.1 design software.

Updated corporate logo.

Updated Technical Support Assistance information.

April 2011 01.4 Added support for LatticeECP3 device family and Lattice Diamond 1.2
design software.

November 2010 01.3 Added support for MachXO2 device family and Lattice Diamond design
software.

December 2009 01.2 Added support for LatticeXP2 device family.

August 2009 01.1 Added VHDL source file and testbench.

February 2009 01.0 Initial release.

	I2C Master with WISHBONE Bus Interface
	Introduction
	Features

	Functional Description
	Design Module Description
	Top-level Module (i2c_master_top.v)
	Internal Registers Module (i2c_master_registers.v)
	Byte Command Controller Module (i2c_master_byte_ctrl.v)
	Bit Command Controller Module (i2c_master_bit_ctrl.v)
	Miscellaneous Features

	Common Operation Sequence
	HDL Simulation and Verification
	Implementation
	References
	Technical Support Assistance
	Revision History

