OpenCores
8051 Core
8/10/2002

oc8051 Design

Document

Authors: Jaka Simsic

Simon Teran

Jaka.Simsic@campus.fri.uni-lj.si
Simon.Teran@campus.fri.uni-lj.si
Rev. 0.2
October 8. 2002

This Page is Intentionally Blank
Revision History

	Rev.
	Date
	Authors
	Description

	0.1
	02/09/02
	Jaka Simsic,
Simon Teran
	First Draft

	0.2
	08/10/02
	Jaka Simsic,
Simon Teran
	Verification added

	
	
	
	

Contents
71. About 8051

71.1. Architecture Overwiev

81.1.2. Memory Organization

101.1.3. Special Function Registers (SFRs)

111.1.4. Addressing Modes

111.1.5. Machine Cycles

111.2. oc8051

121.2.1. Directory structure

2. 13oc8051 Realization

132.1. oc8051 Plan

152.2. Program Memory and SFRs

152.3. Module Hierarchy

162.4. Concept

172.5. Module Descriptions

172.5.1. oc8051_top

172.5.2. oc8051_decoder

18Output signals

182.5.3. oc8051_alu

192.5.4. oc8051_pc

192.5.5. oc8051_rom

192.5.6. oc8051_comp

202.5.7. oc8051_op_select

202.5.8. oc8051_regX

202.6. Data Memory and SFRs

212.6.1. oc8051_ram_top

212.6.2. oc8051_acc

212.6.3. oc8051_b_register

212.6.4. oc8051_psw

212.6.5. oc8051_dptr

222.6.6. oc8051_sp

222.6.7. oc8051_ports

222.6.8. oc8051_tc

232.6.9. oc8051_int

242.6.10. oc8051_uart

252.6.11. oc8051_indi_addr

252.6.12. oc8051_ram_sel

252.7. Multipleksers

252.7.1. oc8051_alu_src1_sel

252.7.2. oc8051_alu_src2_sel

252.7.3. oc8051_alu_src3_sel

252.7.4. oc8051_cy_select

262.7.5. oc8051_ext_addr_sel

262.7.6. oc8051_immediate_sel

262.7.7. oc8051_ram_rd_sel

262.7.8. oc8051_ram_wr_sel

262.7.9. oc8051_rom_addr_sel

262.8. Instruction execution

272.8.1. Arithmetic and logic instructions

282.8.2. Data transfer instructions

292.8.3. Bit addressable instructions

302.8.4. Program jumps

302.8.5. Addressing modes

322.9. Interrupts

3. 33Verification

333.1. Additional modules

333.1.1. oc8051_tb

333.1.2. oc8051_xram

333.1.3. oc8051_uart_test

333.2. Features

333.3. Port p3

343.4. Programs

Table of Figures

7Figure 1 Interfae

9Figure 2 Program memory

9Figure 3 Lower part of program memory

10Figure 4 Data memory

14Figure 5 Design diagram

15Figure 6 Memory design diagram

21Figure 7 Program status word (PSW)

22Figure 8 Timer mode register (TMOD)

23Figure 9 Timer control register (TCON)

23Figure 10 Interrupt enable register (IE)

24Figure 11 Interrupt priority register (IP)

24Figure 12 Serial control register (SCON)

27Figure 13 Instruction execution

28Figure 14 External rom access

29Figure 15 Bit addressable instruction

32Figure 16 Addressing internal ram

32Figure 17 Interrupts

34Figure 18 Verification

1

 About 8051

The 8051 microcontroller is member of MCS-51 family, originally designed in the 1980's by Intel. The 8051 has gained great popularity since its introduction and is estimated it is used in a large percentage of all embedded system products.

1.1. Architecture Overwiev

Microcontroller features are 8-bit CPU, on-chip memory (some of which is read-only), two 16-bit timer/counters and four 8-bit I/O ports.

Interface

[image: image1.emf]oc8051

we_o

rst

add_o

stb_o

cyc_o

ack_i

t1

t0

op3

op2

op1

rom_addr

ea

int1

int0

clk

p0_out

rxd

txd

dat_i

dat_o

p3_out

p2_out

p1_out

p0_in

p3_in

p2_in

p1_in

Figure 1 Interfae
Pin description

	name
	direction
	size
	description

	rst
	input
	1
	reset

	clk
	input
	1
	clock

	interrupt interface
	
	

	int0
	input
	1
	external interrupt 0

	int1
	input
	1
	external interrupt 1

	timer/counter inputs
	

	t0
	input
	1
	timer 0 input

	t1
	input
	1
	timer 0 input

	serial interface
	
	

	rxd
	input
	1
	receive

	txd
	output
	1
	transmit

	interface to external program rom

	ea
	input
	1
	external access

	rom_addr
	output
	16
	rom address

	op1
	input
	8
	operation 1 input

	op2
	input
	8
	operation 2 input

	op3
	input
	8
	operation 3 input

	interface to external data ram

	adr_o
	output
	16
	address

	stb_o
	output
	1
	strobe

	cyc_o
	output
	1
	cyrcle

	ack_I
	input
	1
	acknowlege

	dat_I
	input
	8
	data input

	dat_o
	output
	8
	data output

	port interface
	
	

	p0_in
	input
	8
	port 0 input

	p1_in
	input
	8
	port 1 input

	p2_in
	input
	8
	port 2 input

	p3_in
	input
	8
	port 3 input

	p0_out
	output
	8
	port 0 output

	p1_out
	output
	8
	port 1 output

	p2_out
	output
	8
	port 2 output

	p3_out
	output
	8
	port 3 output

1.1.2. Memory Organization

8051 has separated Data and Program Memory.

Program Memory is read-only. There is 64K bytes of Program Memory and up to 4K bytes of on-chip Program Memory (in later versions up to 8K or 16K of on-chip Program Memory). Remaining part of the Program Memory is external and can be reached with EA signal.

[image: image2.emf]exernal program

rom

interanl program

rom

ea = 1

exernal program

rom

ea = 0

ffffh

0000h

2^INT_ROM_WID

Figure 2 Program memory

After reset and interrupts 8051 jumps to fixed address. Figure 3 shows a map of the lower part of the program memory.

[image: image3.emf]0023h

0018h

0013h

0008h

0003h

0000h

reset vector

external interrupt vector 0

timer 0 overflow interrupt vector

external interrupt vector 1

timer 1 overflow interrupt vector

serial port interrupt vector

Figure 3 Lower part of program memory

The memory architecture of 8051 core includes 128 bytes of on-chip Data Memory which are more easily accessible directly by its instructions and there is also a number of Special Function Registers (SFRs). 8052 version has 256 bytes of on-chip Data Memory, but the upper 128 bytes are accesable only with indirect addressing. Direct addressing is used for accessing lower portion of Data Memory and SFRs. Internal Data Memory is divided to four banks of eight registers and to a special 32-byte long segment which is bit addressable.

[image: image4.emf]exernal data ram

internal data ram

00h

ffffh

0000h

ffh

Figure 4 Data memory
1.1.3. Special Function Registers (SFRs)

In this group you can find special registers, witch can be foun in internal ram in addresses from 80h to ffh.
	f8h
	
	
	
	
	
	
	
	
	ffh

	f0h
	b
	
	
	
	
	
	
	
	f7h

	e8h
	
	
	
	
	
	
	
	
	efh

	e0h
	acc
	
	
	
	
	
	
	
	e7h

	d8h
	
	
	
	
	
	
	
	
	dfh

	d0h
	psw
	
	
	
	
	
	
	
	d7h

	c8h
	
	
	
	
	
	
	
	
	cfh

	c0h
	
	
	
	
	
	
	
	
	c7h

	b8h
	ip
	
	
	
	
	
	
	
	bfh

	b0h
	p3
	
	
	
	
	
	
	
	b7h

	a8h
	ie
	
	
	
	
	
	
	
	afh

	a0h
	p2
	
	
	
	
	
	
	
	a7h

	98h
	scon
	sbuf
	
	
	
	
	
	
	9fh

	90h
	p1
	
	
	
	
	
	
	
	97h

	88h
	tcon
	tmod
	tl0
	tl1
	th0
	th1
	
	
	8fh

	80h
	p0
	sp
	dpl
	dph
	
	
	
	pcon
	87h

- Accumulator (ACC)

Intended for use by special instructions.

- B register

Used at multiplying and dividing.

- Status register (program status word, PSW)

Contains program status information.

- Stack pointer (SP)

Used with PUSH and POP istructions and in jump to/from subroutines. Reset sets it to 07h.

-Data pointer (DPTR)

DPTR is composed from upper byte (DPH) and lower byte (DPL). This is neccesary to accomplish 16 bit address.

- Pors 0 to 3

Four 8 bit I/O ports, used for interaction brtween microcontroller and ist environment.

- two 16 bit Timer/Counters

Each is built from two 8 bit registers (TH0, TL0, TH1, TL1).

- Control registers

Registers for controlling the rest of perifery (interrupts, timers…)

1.1.4. Addressing Modes

- direct addressing (Data Memory and SFRs)
In direct addressing the operand is specified by an 8-bit address field in the instruction. This address mode is possible only for addressing internal Data RAM and SFRs.
- indirect addressing

In indirect addressing the instruction specifies a register which contains the address of the operand. The address register for 8-bit addresses can be R0 or R1 of the selected register bank, or the Stack Pointer. The address register for 16-bit addresses can only be the

16-bit “data pointer” register, DPTR.

Both internal and external RAM can be indirectly addressed.
- register instructions
Special instructions are used for accessing four register banks (containing registers R0 to R7). This instructions have a 3-bit register specification within the opcode of the instruction.
Register bank is selected by two bank select bits in PSW.
- register- specific instructions
These are instructions which are specific to a certain register and they don't need an address byte (they always operate with the same register). The most common are those that use ACC register.

- immediate constants

In this address mode the value of a constant follows the opcode.

- indexed addressing

In this mode only Program Memory can be accessed. The address wanted is sum of 16 bit base register (DPTR or PC) and accumulator (ACC).

1.1.5. Machine Cycles

Each machine cycle in 8051 is composed from six stages. Every stage lasts for two clock periods. That means every istruction needs at least twelve clock periods, some of them need even two machine cycles or more (multiplying, dividing…).

1.2. oc8051

Oc8051 has all properties of its Intel predecessor, with few exceptions:

· it has two stage pipeline, so all instructions (except jumps) can be executed in one clock period

· there is 256 bytes of on-chip Data Memory, SFRs and general-purpose memory share same address space
· 64K of on-chip Program Memory
· there are separate connection for input and output ports and every special function (address for external memory, data bus, interrupts) has its own pin (at 8051 these are realized like special port functions)
1.2.1. Directory structure
· oc8051

· asm

· hex

· in

· v

· vec

· bench

· verilog

· doc

· pdf

· src

· rtl

· verilog

· sim

· rtl_sim

· out

· run

· src

· verilog

· sw

· source

· syn

· src

· verilog
2

 oc8051 Realization

2.1. oc8051 Plan

[image: image5.wmf]oc8051_decoder

oc8051_alu

Rom & SFR

oc8051_alu_src1_sel

oc8051_alu_src2_sel

oc8051_alu_src3_sel

oc8051_cy_select

oc8051_ram_rd_sel

oc8051_ram_wr_sel

oc8051_pc

oc8051_op_select

oc8051_rom

oc8051_immedate_sel

oc8051_comp

oc8051_rom_addr_sel

external ram input

oc8051_divide

oc8051_multiply

Figure 5 Design diagram

2.2. Program Memory and SFRs

[image: image6.wmf]oc8051_ram_top

oc8051_acc

oc8051_psw

oc8051_b_register

oc8051_indi_addr

oc8051_ram_sel

oc8051_sp

oc8051_dptr

destination 1 from oc8051_alu,

write address from

oc8051_ram_wr_sel, write

froom oc8051_decoder.

read addres from oc8051_rom_ad_sel

to alu source select

psw outputs (carry,

overflow...)

oc8051_ram

from decoder

to ram write and read

select

oc8051_ext_addr_sel

Exteranl ram

oc8051_int

oc8051_tc

oc8051_uart

txd

rxd

ie1

ie0

t1

t0

Figure 6 Memory design diagram
2.3. Module Hierarchy

oc8051_top

· oc8051_decoder

· oc8051_alu

· oc8051_divide

· oc8051_multiply

· oc8051_alu_src1_sel

· oc8051_alu_src2_sel

· oc8051_alu_src3_sel

· oc8051_comp

· oc8051_cy_select

· oc8051_immediate_sel

· oc8051_op_select

· oc8051_pc

· oc8051_ram_rd_sel

· oc8051_ram_wr_sel

· oc8051_rom_addr_sel
· oc8051_ram_top

· oc8051_ram

· oc8051_ram_sel

· oc8051_acc

· oc8051_b_register

· oc8051_dptr

· oc8051_ext_addr_sel

· oc8051_indi_addr

· oc8051_ports

· oc8051_psw

· oc8051_sp
· oc8051_int
· oc8051_tc
· oc8051_uart
2.4. Concept

Oc8051 is compatible with 8051 microcontroller and with its perifery. With compatible we mean that oc8051 uses the same instruction set. There are of course quite a few differences in realization itself.

First and maybe the most important difference is pipeline with two stages. In first period instruction and its operands are fetched and decoded, second period is used for computing the result and writing it to the memory. We achieve this with additional set of registers which only task is to delay signals for one clock period. This is a must because the idea is that we set all control signals already in the first period and then delay the one that are not needed (for example, address where the result will be saved) for one period.

Because we might also need the second and third byte of the instruction we use Program ROM with 24 bits wide bus. Because of processor design we also use inner memory which is capable to simultaneously write and read.

One of important aspects is also bus control, which is handled by main module (oc8051_decoder). We achieve this with control signals which are connected to multipleksers that are set at the beginning of each bus. With multipleksers we set who controls the bus at the moment.

2.5. Module Descriptions

2.5.1. oc8051_top

Module oc8051_top is at the top of module hierarchy and represents interface with the environment. It does not contain any 'always' commands and is only used for interaction between modules and environment.

Ports:

- rst
reset

- clk
clock

- rom_addr
Program Memory address

- rom_data
Program Memory data

- ea
external access: is used when the external memory is accesed

- int0 external interrupt 0

- int1 external interrupt 1

- dat_i
input for external Data Memory

- dat_o
output for external Data Memory

- adr_o
external Data Memory address

- we_o
writing to external Data Memory

- stb_o

strobe

- ack_i

acknowlage
- cyc_o
cycle
- p0_in, p1_in, p2_in, p3_in
port inputs

- p0_out, p1_out, p2_out, p3_out
port outputs

- op1, op2, op3 inputs from external Program Memory (3x 8 bitov)

- rxd

receive

- txd

transmit

- t0, t1
t/c external inputs

2.5.2. oc8051_decoder

As it was already mentioned oc8051_decoder is main module. This module gets operation code from the Program Memory and then sets control signals.

There are two internal signals. First is two bit wide signal, state. This signal obviously holds information about the state, that is the state of the pipeline. Typical value for this signal is b00. This value is changed only when the execution of command in the pipeline is blocked (jumps …). Second internal signal is op, this is registers in which we save operation code and is also needed only with instructions that take more then one clock period to complete (jumps again).

Module is composed from five 'always' commands:

· first and longest contains 'case' sentence in which we get information in which state is pipeline. With that information and with information about operation code we set control signals.

· second 'always' is for remembering operation code

· third is for setting signal state to desired value

· forth 'always' takes care for output signal reti
· and last 'always' command is for signal write_x
Output signals

· ram_rd_sel
defines the source of the read address

· ram_wr_sel
defines the source of the write address
· wr
is set when we write to the memory

· src_sel1
defines the source for first ALU input
· src_sel2
defines the source for second ALU input
· src_sel3
defines the source for third ALU input
· alu_op
defines ALU operation

· psw_set
defines which flags in PSW register are set

· cy_sel
carry select

· comp_sel
compare byte select (is useful for conditional jumps)

· bit_addr
is set when istruction is bit addressable

· wad2
defines if the second output from ALU is written to ACC (instructions mul and div)

· imm_sel
immediate operand selection

· pc_wr
is set when we change program counter (PC)

· pc_sel
PC select – defines the address for new PC value

· rom_addr_sel
defines source for Program Memory address

· ext_addr_sel
defines source for external Data Memory address

· rd
ready (0 normal activities, 1 pipeline stop)

· wr_xaddr
write to external Data Memory (active high)

· reti
return from interrupt

· rmw
if active we have read-modify-write instruction (details are at port descriptions)
· we_o
write to external ram
· stb_o
strobe to external ram
2.5.3. oc8051_alu

Module oc8051_alu represents combinational logic for arithmetical and logical operations.

Module has three 8 bit input operands (third operand is needed only for computing the address for PC or DPTR) and three input signals. This three signals are carry, auxiliary carry and a signal which is used for bit addressable instructions. And there is also four bits wide input for operation code.

Next operations are available:

· OC8051_ALU_NOP – no operation

· OC8051_ALU_ADD - adding

· OC8051_ALU_SUB - substracting

· OC8051_ALU_MUL - multiplying

· OC8051_ALU_DIV - dividing

· OC8051_ALU_DA – decimal adjust

· OC8051_ALU_NOT – negation, bit negation

· OC8051_ALU_AND – and, bit and

· OC8051_ALU_XOR – exclusive or

· OC8051_ALU_OR - or

· OC8051_ALU_RL – rotacion left

· OC8051_ALU_RLC – rotacion left with carry (operation swap nibbles)

· OC8051_ALU_RR – rotacion right

· OC8051_ALU_RRC – rotacion right with carry

· OC8051_ALU_PCS – adding 16 bit unsigned number with 8 bit signed number (tows-complement)

· OC8051_ALU_XCH – excange, first input is transfered to second output and vice versa. If carry is set only lowest halfs of bytes are changed
Exact coding of operations is written in oc8051_defines.v file.

Output from module are two 8 bit results, carry, auxiliary carry and overflow.

For multiplying and dividing submodules oc8051_multiply and oc8051_divide are used. They both have 8 bit input bus and two 8 bit output buses for result and an output for carry.

2.5.4. oc8051_pc

Module oc8051_pc is actually a program counter. It computes the value of address for next instruction.

Input in module is operation code with which we compute the value for address. There are also inputs that are used in case of jumps (op2 and op3 in case of absolute jumps, alu input for relative addressing), there are also signals for choosing the source for new pc (pc_wr_sel) and a signal which is used if we input new address (wr).

The only output from module is 16 bit current value of program counter.

2.5.5. oc8051_rom

This module contains Program Memory. It depends on the technology we are using for implement oc8051.

Input in module is 16 bit address. Outputs are three 8 bit data buses and ea_int signal. Input address is from first byte of data (data1), second and third byte (data2, data3) are on the following addresses. This is needed for uninterrupted functioning of pipeline.

Ea_int signal is equal to external ea signal, it is activated if the used address is to big for internal Program Memory and we need to access external Program Memory.
2.5.6. oc8051_comp

Function of module oc8051_comp is to compare two inputs and set output if the inputs are the same. Module is needed for computing conditions at conditional jumps.

There are different options for comparing the inputs:

· ACC vs. zero

· result of arithmetic operation vs. zero

· carry

· bit carry (from memory)

These options are enough for all conditional jumps in 8051. Output is connected to oc8051_decoder input, where is transferred to pc_wr when needed.

2.5.7. oc8051_op_select

All data coming from Program Memory goes through this module. It has three assignments.

First assignment is to choose which memory will be used, internal or external. In this assignment the module is functioning like a multiplekser: it has ea and ea_int signals for inputs (if anyone of this two signals is low there is a read cycle from external memory) and an output. Second assignment for this module is interrupt intake. For this purpose this module, beside three 8 bit inputs, has also two input signals for receiving interrupts. These are signal int and 8 bit int_v. We have an interrupt if int signal is set and on the 8 bit bus we receive address of interrupt program (upper 8 bits are zeros). At interrupt we check if the instruction currently executing is 'longer' then one clock cycle (input signal rd) and then LCALL operation code is sent to first output. On other two outputs address of interrupt program is sent. Last assignment of this module is checking operation code and sending memory address, for writing the result, to the output. This is used with instructions that need DPTR for computing results and with instructions that use B register. With this option for immediate addressing mode later on is achieved. We have to be careful, because with this we have two different outputs for second operand, one for immediate operand in ALU and the other for direct addressing.

2.5.8. oc8051_regX

Oc8051_regX modules represent X bit registers, which only function is to delay signal for one clock cycle. Besides input for clock and reset they also have data input and output.

2.6. Data Memory and SFRs

In this section the modules which can contain data will be described. They share same address space, so they all have some common input signals.

These signals are:

- clk
clock

- rst
reset. Reset values are written oc8051_defines.v file.

- wr
writing

- wr_addr
address to where data is written

- data_in
input data

- wr_bit
defines if the instruction is bit addressable

- bit_in
bit input (for use only with bit addressable instructions and Data Memory)

SFRs has to be checked every clock period if this is a write cycle (wr signal), if it is bit addressable and if the address matches the data will be written to the register. We also have to allow that the address for bit or byte addressable instructions differs. Physical addresses are defined in oc8051_defines.v file.
Beside already mentioned inputs memory also have input for data address and data output.

All SFRs also have output from where current value of register can be read and a few special outputs that will be described in the following section.

2.6.1. oc8051_ram_top

This module contains Data Memory. It works like some sort of intermediate between ordinary memory and the kind of memory we need (capable of bit addressing). In the bit addressing mode we have to use right bit from the address byte. When ther is a write cycle the whole byte has to be read, appropriate bit changed and all byte has to be written back to the memory.

Submodule of this module is oc8051_ram. This module depends on technology we use and it is an ordinary memory with 8 bit address. Simultaneus reading and writing is demanded because of the pipeline.

2.6.2. oc8051_acc

The most used SFR is Accumulator (ACC). Besides standard ports it also has 8 bit input for second ALU result (data2_in) and signal wad2 which activates writing of second result to register. There is another output for parity (p).

2.6.3. oc8051_b_register

B register is simple bit addressable register without special features.

2.6.4. oc8051_psw

This module contains Program Status Word (PSW) register (figure 7). Beside standard inputs it also has input signal p (parity) from accumulator, auxiliary carry and overflow from ALU and signal set that defines what should be written to register.

[image: image7.emf]cy rs1 f0 ac rs0 p - ov

Figure 7 Program status word (PSW)
	Cy
	psw.7
	carry

	Ac
	psw.6
	auxiliary carry

	f0
	psw.5
	flag 0

	rs1
	psw.4
	register bank selector 1

	rs0
	psw.3
	register bank selector 0

	Ov
	psw.2
	overflow

	-
	psw.1
	user definable

	P
	psw.0
	parity

2.6.5. oc8051_dptr

This module contains 16 bit Data Pointer. It has two 8 bit outputs (data_hi and data_lo) and 8 bit input bus for second ALU result and 2 bit signal that is used when we use instructions that treat DPTR as 16 bit register.

This register is not bit addressable.

2.6.6. oc8051_sp

This module represents Stack Pointer. Besides stndard inputs it also has two input signals connected to oc8051_decoder. This two signals define from where read or write address will be taken.

2.6.7. oc8051_ports

This module takes care of input-output ports. It has four 8 bit input buses and four 8 bit output buses. This signals are used for communicating with environment. Input to module is also 8 bit current address. This module also has rmw signal, which tells us if the instruction is so called read-modify-write instruction. With these instructions we don't read input pins of module but registers of output ports.

These instructions are:

· ANL

· ORL

· XRL

· JBC

· CPL

· INC

· DEC

· DJNZ

· MOV PX.Y, C

· CLR PX.Y

· SETB PX.Y

2.6.8. oc8051_tc

This module contains the description of oc8051 timers. There are two timers: Timer/Counter 0 (T/C 0) and Timer/Counter 1 (T/C 1). Both timers are 16 bit long and are represented by two 8 bit registers each (TL0 and TH0 for T/C 0, TL1 and TH1 for T/C 1). This module also contains SFR TMOD, which defines timer modes. You can see detailes on figure 8.

[image: image8.emf]gate m0 m1 c/t gate m0 m1 c/t

Figure 8 Timer mode register (TMOD)

	timer 1 bits 7-4, timer 0 bits 3-0

	gate
	
	sofrtware/hardware run control

	c/t
	
	counter / timer

	m1
	
	mode selector 1

	m0
	
	mode selector 0

Four input signals ie0, ie1, tr0, tr1 represent conditions that activate timers. There are also two output signals tf0 and tf1, those signals set overflow flags in TCON register and 8 bit output bus (data_out) from which we can read current value of the chosen register (TMOD, TL0, TH0, TL1, TH1).

Timers can operate in four different modes:

mode 0: both timers are 8-bit counters with divide-by-32 prescaler, that gives us a 13-bit counter. Only lower five bits of TLx register are used.
mode 1: both registers are 16-bit counters

mode 2: THx represents 8-bit counter which is filled with TLx content at overflow
mode 3: in this mode t/c1 just holds constant value. While t/c0 is used as two separate 8-bit counters. TH0 uses control signals from timer0 (TR0 in TF0), while TL0 is using control signals from timer1 (TR1 in TF1).

2.6.9. oc8051_int

This is interrupt module. It accepts interrupt requests and under defined conditions dispatches these requests to the processor. In oc8051 core we have five different interupt sources and each has special address for its service rutine.

These addresses are:

· external interrupt 0 (0003H)

· timer 0 overflow (000BH)

· external interrupt 1 (0013H)

· timer 1 overflow (001BH)

· serial port interrupt (0023H)

This module contains three SFRs:

· timer control register (TCON), contains interrupt flags (figure 9)

[image: image9.emf]tf1 tr0 tf0 tr1 ie1 it0 ie0 it1

Figure 9 Timer control register (TCON)

	tf1
	tcon.7
	timer 1 overflow

	tr1
	tcon.6
	timer 1 run

	tf0
	tcon.5
	timer 0 overflow

	tr0
	tcon.4
	timer 0 run

	ie1
	tcon.3
	external interrupt 1

	it1
	tcon.2
	interrupt 1 control bit

	ie0
	tcon.1
	external interrupt 0

	it0
	tcon.0
	interrupt 0 control bit

· interrupt enable (IE), enables or disables

[image: image10.emf]ea es - - et1 ex0 et0 ex1

Figure 10 Interrupt enable register (IE)

	Ea
	ie.7
	global enable / disable

	-
	ie.6
	not used

	-
	ie.5
	not used

	Es
	ie.4
	serial port interrupt enable / disable

	et1
	ie.3
	timer 1 overflow interrupt enable / disable

	ex1
	ie.2
	external interrupt 1 enable / disable

	et0
	ie.1
	timer 0 overflow interrupt enable / disable

	ex0
	ie.0
	external interrupt 0 enable / disable

· interrupt priority (IP), in this register priority of specific interrupts is set. oc8051 uses two priority levels. When appropriate bit is set the priority of its interrupt source is increased.

[image: image11.emf]- ps - - pt1 px0 pt0 px1

Figure 11 Interrupt priority register (IP)
	-
	ip.7
	not used

	-
	ip.6
	not used

	-
	ip.5
	not used

	Ps
	ip.4
	serial port interrupt priority

	pt1
	ip.3
	timer 1 overflow interrupt priority

	px1
	ip.2
	external interrupt 1 priority

	pt0
	ip.1
	timer 0 overflow interrupt priority

	px0
	ip.0
	external interrupt 0 priority

Module has five interrupt inputs, each for every interrupt source. There are two more input signals, signal reti which is set when interrupt ends and signal ack which is set high when processor vectors to interrupt rutine. Module also has 8 bit bus that is used for fetching interrupt vector address.

2.6.10. oc8051_uart

This module contains oc8051 serial interface (uart). Besides standard inputs it also has an input for receive signal (rxd) and an input for transmit signal (txd). These two signals are also outputs from the processor. There is also a timer1 overflow input and an output for interrupts.

Modul contains three SFRs: serial control (scon), serial data buffer (sbuf) and power control (pcon).

With scon all operations of uart are controlled (figure 12).

[image: image12.emf]sm0 ri ti rb8 tb8 ren sm2 sm1

Figure 12 Serial control register (SCON)

	sm0
	scon.7
	serial port mode 0

	sm1
	scon.6
	serial port mode 1

	sm2
	scon.5
	enables multiprocessor feature

	ren
	scon.4
	enable / disable reception

	tb8
	scon.3
	9 bit to transmit

	tr8
	scon.2
	9 bit received

	ti
	scon.1
	transmit interrupt

	ri
	scon.0
	receive interrupt

Serial interface has four operational modes:

mode 0: 8 data bits are transfered. Baud rate is 1/12 of oscillator frequency.
mode 1: 10 bits are transfered (8 data bits and start and stop bit). Baud rate is variable.
mode 2: 11 bits are transfered: start bit, 8 data bits, programable ninth bit and stop bit. Baud rate is 1/32 if smod is set or 1/64 of oscillator frequency otherwise.

mode 3: 11 bits are transfered: start bit, 8 data bits, programable ninth bit and stop bit. Baud rate is variable.
When in mode 1 or 3 timer1 is needed for computing the baud rate

(baud rate = (2^smod/64)*(timer 1 overflow rate)).

2.6.11. oc8051_indi_addr

This module does not contain any SFR but it still contains a part of Data Memory. It contains data from R0 and R1 registers from all register banks. This registers are used for indirect addressing. Input in module are two bits with which we choose a specific register bank and last part of operation code for choosing between registers R0 or R1. This is needed so the address of operand at indirect addressing is already available in first clock cycle and there is no need to stop the pipeline.

2.6.12. oc8051_ram_sel

This module represents a multiplekser which on the base of a read address sends correct data to the data bus. We can choose between data from the memory or from any of the specail registers. This ensures that we get right data even when addressing SFRs (direct or indirect addressing).

2.7. Multipleksers

As it was already mentioned bus management is based on multipleksers. This chapter describes multipleksers in oc8051 design and their functions. Their main feature is that they choose (based on the signal from oc8051_decoder module) one of the inputs (mainly 8 bits wide) and transfer it to output.

2.7.1. oc8051_alu_src1_sel

This module is used to choose first ALU operand. There are immediate operand, accumulator, data from intrernal memory or data from external memory available.

2.7.2. oc8051_alu_src2_sel

This module is used to choose second ALU operand. There are immediate operand, accumulator, data from both memories (internal, external) or zero available.

2.7.3. oc8051_alu_src3_sel

This module is used to choose third ALU operand: from program counter or from DPTR.

2.7.4. oc8051_cy_select

With this module we choose which carry will be sent to ALU: from PSW, bit data from memory, zero or one.

2.7.5. oc8051_ext_addr_sel

Used for choosing address for external memory: R0 or R1 (same as indirect addressing) or DPTR.

2.7.6. oc8051_immediate_sel

Selection of immediate operand. There are two outputs, for first and second ALU operand. We can choose between PC, second or third instruction byte.

2.7.7. oc8051_ram_rd_sel

Selection of read address: register (R0-R7), indirect address, stack or direct address. When we address registers there are only five bits used (upper three are always zero).

2.7.8. oc8051_ram_wr_sel

Selection of write address: register (R0-R7), indirect address, stack, direct address, accumulator, DPTR or B register.

2.7.9. oc8051_rom_addr_sel

Selection of Program Memory address: PC or DPTR (only at MOVC instruction).

2.8. Instruction execution

For complete overview we have to take a look over three clock cycles.

First clock cycle: Instruction is not fetched yet. Based on previous value of PC and operation code new PC value is computed. This gives as the address of the next instruction. In the next step new op code and operands are fetched from Program Memory.

Second clock cycle: This is first execution cycle. In this period operation code is forwarded to oc8051_pc module, where new PC is computed and to oc8051_decoder module, where all control signals are set. All signals, except internal Data Memory read address signal are delayed for one clock cycle (with oc8051_regX modules). With this delay we achieve that at next active front operand is read from internal Data Memory, control signals and other possible immediate operands are saved to registers.
Third clock cycle: This is second, last execution cycle. I this cycle signals reach their destination. With oc8051_alu_src1 and oc8051_alu_src2 ALU operand are chosen. Operation in ALU is executed and result(s) is written to selected address in memory.

[image: image13.wmf]oc8051_decoder

R

R

src_sel1_r

src_sel1

src_sel2_r

src_sel2

oc8051_alu_src1_sel

oc8051_alu_src2_sel

RAM and SFR

ram_wr_sel

ram_rd_sel

address

sources

oc8051_ram_rd_sel

oc8051_ram_wr_sel

R

wr_addr

wr_addr_r

rd_addr

oc8051_alu

R

alu_op_r

alu_op

imediate

data

acc, ram_out

immediate1_r

immediate2_r

src1

src2

des1

Figure 13 Instruction execution
Most instructions are done like described above. Exceptions are program jumps and instruction for Program Memory read (MOVC).

In next chapters we will go through instruction groups and their specific features.

2.8.1. Arithmetic and logic instructions

Main characteristic of these instructions is that we have to define both ALU operands and ALE operation. Exceptions among these instructions are MUL (multiply) instruction Div (divide) instruction. Difference between these two and the other instructions is in result. When MUL or Div are executed we get 16 bit result and half of it is saved to B register (result1), second half (result2) is saved to ACC. This is achieved if the result is normally written to B register, then wad2 signal is set and with this second result is written to ACC.

Another exception is also INC DPTR instruction, which addresses 16 bit DPTR register. Desired effect is achieved with ALE source3, where upper 8 bits are forwarded, zeros are forwarded to source2, input carry is set to 1, and then add operation is executed.

Next instructions are included in this group:

· ADD
add

· ADDC
add with carry

· SUBB
subtract with carry

· INC
increase by 1

· DEC
decrease by 1

· MUL
multiply

· DIV
divide

· DA
decimal adjust

· ANL
logical and

· ORL
logical or

· XRL
logical xor

· CLR
clear

· RL
rotation left

· RLC
rotation left with carry

· RR
rotation right

· RRC
rotation right with carry

· SWAP
swap bits

2.8.2. Data transfer instructions

This group contains instructions that do not change data value, they just transfer the data to another memory location. ALU operation is fixed to oc8051_alu_nop, which only transfers data from input to output from where it is written to desired location. Exceptions are switdh instructions (XCH and XCHD) where ALE operation oc8051_alu_xch is used.

This instruction group also contains instructions for external memory handling. Picture belows shows a detail from kernel that manages external Data Memory. Read address is chosed with oc8051_ext_addr_sel multiplekser, input data is available in the next clock cycle. Data is available like an option on the multiplekser with which we choose ALE source 1. With the normal procedure data is then written to the internal memory. When writting we only need address and write_x signal and there should be signal from ACC on the output pins.

[image: image14.wmf]oc8051_decoder

oc8051_ext_addr_sel

ext_addr_sel

16 bit wide address

dptr_hi

dptr_lo

ri

oc8051_dptr

oc8051_indi_addr

8 bit wihe data input

oc8051_alu_src1_sel

src1

oc8051_acc

8 bit wide data output

R

write_p

write

write signal,

active high

Figure 14 External rom access
Special instruction for data transfer is also instruction for data transfer from Program Memory. With this instruction we use another multiplekser (oc8051_rom_addr_sel) for address chosing, this multiplekser does not send PC value to output this time but instead it sends ALU operation result. Data is recieved in the next clock cycle as an immediate operand. This instruction takes two clock cycles.

Data transfer instructions are:

· MOV

· PUSH

· POP

· XCH

· XCHD

2.8.3. Bit addressable instructions

These instructions do their operations on bits. They operate same as arithmetic-logical instructions, difference is that instead of ALU source they have bit input and ALU carry, result is available on ALU output. When bit instructions are used we have to take special care when chosing ALU operation. Carry input in ALU is chosen with oc8051_cy_select multiplekser, we can choose between PSW (PSW.7), bit output from memory, logical 1 or logical 0. First two options are used in operations, second two are used for setting (or reseting) particular bits.

[image: image15.wmf]oc8051_decoder

R

cy_sel_r

cy_sel

oc8051_cy_select

RAM and SFR

oc8051_alu

R

alu_op_r

alu_op

bit_out

bti_out

alu_cy

desCy

psw[7]

Figure 15 Bit addressable instruction
This group also contains jump instructions (JC, JNC, JB, JNB and JBC) Which will be decribed more thoroughly in next section.

Other instructions in this group are:
· ANL

· ORL

· MOV

· CLR

· SETB

· CPL

2.8.4. Program jumps

Program jumps are not very similar to other instructions in their execution. The fact that they change PC value is enough that we have to stop the pipeline and wait to get first instruction from new address.

Considering the time we spend on each instruction program jumps can be diveded to three groups:

First group contains instructions that need two clock cycles. These instructions have the value for new PC represented as immediate operand (ACALL, AJMP, LCALL in LJMP). With these instructions new value is written to PC and we simply wait for new instruction.

Second group of instructions needs three clock cycles to execute. These jumps get new address (new PC value) as a sum from current PC (or DPTR in case of JMP () and immediate operand which is represented as tows-complement.

Instructions in this group are:

· JC

· JNC

· JB

· JNB

· JBC

· SJMP

· JMP

· JZ

· JNZ

Third and last group contains instructions that need four clock cycles to finish their job.

These instructions are:

· CJNE, is similar to instruction from prior group, but needs another clock cycle for setting carry flag

· RET

· RETI

2.8.5. Addressing modes

We already get to know some addressing modes, when we described 8051 microcontroller. In this chapter we will concetrate on addressing modes within oc8051.

There are two modules that control addressin modes, oc8051_ram_rd_sel and oc8051_ram_wr_sel.
Those two modules are multipleksers with which we choose from which address we will read and to which we will write. Operands that do not need a read from memory (immediate operands) are selected with oc8051_immediate_sel multiplekser. The last word at selecting the data source has another pair of multipleksers oc8051_alu_src1_sel and oc8051_alu_src1_sel. With them we can choose between data from the Data Memory, from the ACC or immediate operand.

The different addressing modes are:

· direct addressing: We choose direct address with multipleksers (read OC8051_RRS_D – operand 2, write OC8051_RWS_D operand 2 and OC8051_RWS_D3 operand 3) and data from the Program Memory is sent to the bus.
· indirect addressing: For indirect addressin registers R0 and R1 from the chosen register bank are used, module oc8051_indi_addr is used for this, module saves registers that could be useful and then considering which register bank is chosen and last bit of operation code selects the register we might need. Multipleksers for address selecting (oc8051_RRS_I and oc8051_RWS_I) must be set to indirect addressing. Stack management also falls into this group of instructions. With modules oc8051_RRS_SP and oc8051_RWS_SP we get stack pointer value on addressing bus, module oc8051_sp is used for increasing or decreasing the pointer value.
· register inctructions: When we use register instructions the address has to be selected with OC8051_RRS_RN and OC8051_RWS_RN multipleksers. Final physical address is combined from the last three bits of operation code and two bits for selecting register bank. Upper three bits are always zero.
· register-specific instruction: These instructions are mainly specific to Accumulator. ACC read is chosen ALU source select multiplekser. Writing to ACC is chosen with oc8051_ram_wr_sel multiplekser Which offers ACC write as one of the options (OC8051_RWS_ACC). There are also some instructions that are specific to B register or DPTR. This instructions are intercepted in oc8051_op_select modul, needed address is put to second result bus and is treated as direct addressing.
· immediate constants: In this address mode the value of a constant follows the opcode. Because of restriction that three bytes are always delivered from memory they are also immediatly available. We choose which one we want to use with oc8051_immediate_sel multiplekser and later on with selecting immediate operand for ALU source. This group also includes Program Counter, so it can also be used for calling subroutines and relative addressing.
· indexed addressing: This addressing mode is used solely when addressing Program Memory. At this mode oc8051_rom_addr_sel multiplekser is used. Instead of PC, ALE result is send when next address is computed. Data is received as immediate operand in next clock cycle.

[image: image16.wmf]oc8051_decoder

R

R

src_sel1_r

src_sel1

src_sel2_r

src_sel2

oc8051_alu_src1_sel

oc8051_alu_src2_sel

RAM and SFR

ram_wr_sel

ram_rd_sel

oc8051_ram_rd_sel

oc8051_ram_wr_sel

R

wr_addr

wr_addr_r

rd_addr

acc, ram_out

immediate2_r

oc8051_immediate_sel

R

R

immediate1_r

immediate1

immediate2

src1

src2

oc8051_sp

sp

oc8051_indi_addr

ri

{psw[4:3], op1_n[2:0]}

oc8051_op_select

op1_n,

op2_n,

op3_n

oc8051_pc

pc_hi_r,

pc[7:0]

op2_dr

Figure 16 Addressing internal ram
2.9. Interrupts

As we had already seen module oc8051_int manages interrupt handling. This module intercepts interrupt, defines address of interrupt program and sends interrupt demand to next module. If interrupt is enabled and none with higher (or same) priority is already processing then modul sets int signal and writes interrupt program address to int_v bus. This interrupt demand is send to oc8051_op_select module which stops execution of current program and starts executing LCALL instruction. When interrupt program finishes (with RETI instruction) oc8051_decoder sets reti signal and communicate oc8051_int module that processing of interrupt is finished so program can be interrupted on this priority level.

[image: image17.emf]oc8051_op_select

oc8051_int

oc8051_uart

oc8051_tc

int_uart

tf1

tf0

int1

int0

intr

int_src

ack

program rom

oc8051_decoder reti

Figure 17 Interrupts
3

 Verification

This chapter describes a method of testing oc8051 and all on-chip perifery.

The basic idea is that we download the verification program to internal Program Memory and then monitor output of p0, p1 and p2 ports. Port p3 serves for additional testing of perifery.

3.1. Additional modules

3.1.1. oc8051_tb

This is the top module, test bench. It contains connections between oc8051 core and the rest of the verification modules. In this module ports from 0 to 2 are monitored and the data is then compered with the expected data.

3.1.2. oc8051_xram

This module contains external Data Memory. It is important for testing movx instructions.

3.1.3. oc8051_uart_test

This module is used for testing serial interface (uart). It contains modul oc8051_uart whish is the same as in oc8051 core. Using this module communication across serial interface is tested.

3.2. Features

Basic idea is that we run a program on our oc8051 core and monitor output ports. So all test programs must put an unexpected value (error number for example) on output if an error occurs.

Expected values of outputs are saved in oc8051_test.vec file. This file is loaded to buffer in oc8051_tb module and at every change on ports the output vector is compared to the one in the file. When vector XXXX is reached the test is succesfuly finished.

3.3. Port p3

As it was already mentioned port p3 is used for testing the oerifery of the processor.

This is the reason that most pins has special assignment:

7
selects between external memory and uart

 1 - external memory

 0 - uart

6
connected to input t1

5
connected to input t0
4
connected to input int1

3
connected to input int0

2
unused

1
connected to ow, input to external uart

0
connected to wr_bit, input to external uart

[image: image18.emf]oc8051

oc8051_uart_test

oc8051_xram

mux

address, data and

control signals

txd

rxd

wr_bit

ow

t1

t0

int1

int0

p3_out.7

p3_out.0

p3_out.1

p3_out.2

p3_out.3

p3_out.4

p3_out.5

p3_out.6

not used

rxd

txd

Figure 18 Verification
3.4. Programs

Most programs that we use for testing the core was found on homepage of a similar project (http://www.cs.ucr.edu/~dalton/i8051/).

This programs test only processor, so for testing the perifery a few programs are added:

· div16u: additional testing of mul and div instructions

· xram_m: testing of external Data Memory

· timer_test: timer testing

· counter_test : counter testing

· interrupt_test : interrupts testing
· serial_test : serial interface testing

· r_bank: testing of psw fourth and fifth bit (register bank choosing)

www.opencores.org
Rev 0.2
6 of 34

_1095273323.vsd

_1095275022.vsd

_1095275585.vsd

_1095535118.vsd

_1095578132.vsd

_1095275317.vsd

_1095274364.vsd

_1095274677.vsd

_1095273972.vsd

_1091830718.vsd

_1095272471.vsd

_1095272649.vsd

_1095268446.vsd

_1091829682.vsd

_1091830435.vsd

_1091830641.vsd

_1091830382.vsd

_1091828802.vsd

