
Introduction to Verilog

Synthesis and HDLs

 
Verilog: The Module 

Continuous (Dataflow) Assignment

Gate Level Description

Procedural Assignment with always

Verilog Registers

Mix-and-Match Assignments

The case Statement

The Power of Verilog: n-bit Signals

The Power of Verilog: Integer Arithmetic

Dangers of Verilog: Incomplete
Specification

Incomplete Specification Infers Latches

Avoiding Incomplete Specification

The Sequential always Block

Importance of the Sensitivity List

Simulation

Blocking vs. Nonblocking Assignments

Assignment Styles for Sequential Logic

Use Nonblocking for Sequential Logic

Simulation

Use Blocking for Combinational Logic

Dangers of Verilog : Priority Logic

Priority Logic

Avoiding (Unintended) Priority Logic

Interconnecting Modules

Module Definitions

Top-Level ALU Declaration

Simulation

More on Module Interconnection

Useful Boolean Operators

Testbenches (ModelSim)

Summary

Advance Verilog

Parameter

■ Parameters are useful because they can be redefined on a module
instance basis. That is, each different instance can have different
parameter values. This is particularly useful for vector widths.

■ For example, the following module implements a shifter:
module shift (shiftOut, dataIn, shiftCount);
 parameter width = 4;
 output [width-1:0] shiftOut;
 input [width-1:0] dataIn;
 input [31:0] shiftCount;
 assign shiftOut = dataIn << shiftCount;
endmodule

■ This module can now be used for shifters of various sizes, simply
by changing the width parameter.

Define Parameter Value

■ There are two ways to change parameter values from their
defaults, defparam statements and module instance
parameter assignment.

The defparam statement allows you to change a module
instance parameter directly from another module. This is
usually used as follows:

 shift sh1 (shiftedVal, inVal, 7); //instantiation
defparam sh1.width = 16; // parameter redefinition

Parameter values can be specified in the module instantiation
directly. This is done as follows:

 shift #(16) sh1 (shiftedVal, inVal, 7);
 //instance of 16-bit shift module

Task and Function

■ Tasks and functions are declared within modules. The
declaration may occur anywhere within the module, but it
may not be nested within procedural blocks. The declaration
does not have to precede the task or function invocation.

■ Tasks may only be used in procedural blocks. A task
invocation, or task enable as it is called in Verilog, is a
statement by itself. It may not be used as an operand in an
expression.

■ Functions are used as operands in expressions. A function
may be used in either a procedural block or a continuous
assignment, or indeed, any place where an expression may
appear.

Task
■ Tasks may have zero or more arguments, and they may be

input, output, or inout arguments.

task do_read;
input [15:0] addr;
output [7:0] value;
begin
 adbus_reg = addr; // put address out
 adbus_en = 1; // drive address bus
 @(posedge clk) ; // wait for the next clock
 while (~ack)
 @(posedge clk); // wait for ack
 value = data_bus; // take returned value
 adbus_en = 0; // turn off address bus
 count = count + 1; // how many have we done
end
endtask

Function

■ In contrast to tasks, no time or delay controls are allowed in a
function. Function arguments are also restricted to inputs only.
Output and inout arguments are not allowed. The output of a function
is indicated by an assignment to the function name. For example,
function [15:0] relocate;
 input [11:0] addr;
 input [3:0] relocation_factor;
begin
 relocate = addr + (relocation_factor<<12);
 count = count + 1; // how many have we done
end
endfunction

■ The above function might be used like this:
assign absolute_address = relocate(relative_address, rf);

System Task

■ System tasks are used just like tasks which have been
defined with the task ... endtask construct. They are
distinguished by their first character, which is always a
"$".

■ There are many system tasks, but the most common
are:

$display, $write, $strobe
$monitor
$readmemh and $readmemb
$stop
$finish

Example of System Task

■ The $write system task is just like $display, except
that it does not add a newline character to the output
string.

■ Example:
$write ($time," array:");
for (i=0; i<4; i=i+1) write(" %h", array[i]);
$write("\n");

This would produce the following output:
110 array: 5a5114b3 0870261a 0678448d 4e8a7776

System Function

■ Likewise, system functions are used just like
functions which have been defined with the
function ... endfunction construct. Their first
character is also always a "$".

■ There are many system functions, with the
most common being:

$time ($stime)
$random
$bitstoreal

Example of System Function

■ The $time system function simply returns the current
simulation time. Simulation time is a 64-bit unsigned
quantity, and that is what $time is assumed to be when
it is used in an expression.

■ $stime (short time) is just like $time, except that it
returns a 32-bit value of time.

■ Example:

 $display ("The current time is %d", $time);

 $display ($time," now the value of x is %h", x);

Conversion Function

$rtoi(real_value)  
Returns a signed integer, truncating
the real value.

$itor(int_val)
 Returns the integer converted to a

real value.
$realtobits(real_value)  

Returns a 64-bit vector with the bit
representation of the real number.

$bitstoreal(bit_value)
 Returns a real value obtained by

interpreting the bit_value argument
as an IEEE 754 floating point
number.

module driver (net_r);
output net_r;
real r;
wire [64:1]
net_r = $realtobits(r);
endmodule
module receiver (net_r);
input net_r;
wire [64:1] net_r;
real r;
always @(net_r)
 r = $bitstoreal(net_r);
endmodule

XMR

■ Verilog has a mechanism for globally referencing
nets, registers, events, tasks, and functions called the
cross-module reference, or XMR. This is in marked
contrast to VHDL, which rejected the concept.

■ Cross-module references, or hierarchical references
as they are sometimes called, can take several
different forms:

References to a Different Scope within a Module
References between Modules
Downward Reference
Upward Reference

Hierarchical Module

■ There is a static scope within each module definition with which one can locate any
identifier. For example, in the following,

module A;
reg x; // 1
...
task B;
reg x; // 2
 begin
 ...
 begin: C
 reg x; // 3
 ...
 end
 end
endtask

initial
begin: D
 reg x; // 4
 ...
end
endmodule

Reference to Scopes within Module

■ there is a module, a task, and two named
blocks. There are four distinct registers,
each named x within its local scope.

Coding Styles

Memory

■ The following are examples of memory
declarations.
reg [7:0] memdata[0:255];// 256 8-bit registers
reg [8*6:1] strings[1:10];// 10 6-byte strings
reg membits [1023:0];// 1024 1-bit registers

■ The maximum size of a memory is
implementation-dependent, but is at least
2^24 (16,777,216) elements.

Access to Memory

■ A memory element is accessed by means of a memory index
operation. A memory index looks just like a bit-select: 
 mem[index]

■ Another limitation on memory access is that you can't take a
bit-select or part-select of a memory element. Thus, if you
want to get the 3rd bit out of the 10th element of a memory,
you need to do it in two steps:
reg [0:31] temp, mem[1:1024];  
...  
temp = mem[10];  
bit = temp[3];

Finite State Machine

■ There are two common variations of state machines,
Mealy and Moore machines.

■ Mealy machines produce outputs based on both current state and input.
■ Moore machines produce outputs based only on the current state. As

you would expect, the Verilog representation of the two types is very
similar.

■ Typically, the clock is used to change the state based on
the inputs which have been seen up to that point. It is
often convenient to think of all the activity of the state
machine as taking place on the clock edge:

■ sample inputs
■ compute next state
■ compute outputs
■ change state
■ produce outputs

Finite State Machine

■ Finite state machines are one of the common types
of logic designed using Verilog. There are several
ways to represent them:

■ Implicit
■ Explicit

■ State machines always have inputs, a state variable
or set of variables (sometimes called a state vector),
and a clock. The clock does not have to be periodic,
but there must be some strobe signal which indicates
when the state transition decision should be made.

Implicit Coding

 An implicit FSM is
simply one whose
state encoding is
done by means of
procedural code. In
essence, the
program counter is
the current state
variable.

Explicit Coding

 Representing FSMs
explicitly is a better
style than implicit
coding, both because
the code maps well to a
state transition table
and also because
explicit representation
is synthesizable.

Explicit Coding

 The following is an
example of using an
always block for next
state logic. This style
is probably more
common, but it is
really no different
than the first version.

Pipeline

■ Pipelines, queues, and FIFOs are common
logic structures which are all related, in the
sense that data moves from one storage
location to another synchronously, based
on a strobe signal, usually a clock.

Pipeline Coding

module pipeline (out, in, clock);
output out;
input in, clock;
reg out, pipe[1:2];
always @(posedge clock)

begin
out = pipe[2];
pipe[2] = pipe[1];
pipe[1] = in;
end

endmodule

■ This code works fine. The only potential problem is that out changes value on
the clock edge, so whatever takes it as an input may get the wrong value.

Pipeline Coding

■ A better version would be to use a non-blocking assign:

always @(posedge clock)
begin
out <= pipe[2];
pipe[2] <= pipe[1];
pipe[1] <= in;
end

■ Note that with the non-blocking assign, the order of the
assignment statements is irrelevent.

Pipe Stage as Separate Module

 It is common to
make a single
pipe stage
module and use it
repetitively, as
follows:

Combinational Logic in Pipeline

 It is more interesting if
there is some
combinational logic
associated with each pipe
stage. Suppose each stage
has some logic
represented by a function
f1, f2, f3 which is applied to
the input.

Race Condition

■ The implication of all this is that you had better not write
Verilog code which has a different result depending on the
order of execution of simultaneous, unordered events. This
is known generally as a race condition, and it occurs when
one event samples a data value, another event changes
the data value, and the two events are unordered with
respect to each other.

■ Example:
 always @(posedge clock) dff1 = f(x);
 always @(posedge clock) dff2 = dff1;
■ This attempt at a pipeline doesn't work, because the value

of dff2 may be either the old or the new value of dff1

