Introduction to Verilog

Synthesis and HDLs

m Hardware description language (HDL) is a convenient, device-
independent representation of digital logic

Verilog
input a,b;

output sum;
assign sum <= {1b'0, a} + {1b'0, b};

m HDL description is compiled

Compilation and :)
into a netlist

Synthesis
m Synthesis optimizes the logic

= Mapping targets a specific
hardware platform

Mapping

ASIC
(Custom ICs)

" JE
Verilog: The Module

m Verilog designs consist of

interconnected modules. t
ou

= A module can be an element or
collection of lower level design blocks.

outbar

= A simple module with combinational

|09iC mlght look like this: Out = Sel e A+ sel ® b
2-to-1 multiplexer with inverted output
module mux 2 _to_1l(a, b, out, Declare and name a module; list its
outbar, sel); ports. Don’t forget that semicolon.
// This is 2:1 multiplexor Comment starts with //

Verilog skips from // to end of the line

input a, b, sel; Specify each port as input, output,

output out, outbar; or inout

Express the module’s behavior.
Each statement executes in
assign outbar = ~out; parallel; order does not matter.

assign out = sel ? a : b;

endmodule Conclude the module code.

" S
Continuous (Dataflow) Assignment

module mux 2 to 1l(a, b, out,
outbar, sel); Q =1
input a, b, sel; out
output out, outbar; —
= b=0 outbar
assign out = sel ? a : b;

assign outbar = -~out;
endmodule

sel

= Continuous assignments use the assign keyword
= A simple and natural way to represent combinational logic

m Conceptually, the right-hand expression is continuously evaluated as a function of
arbitrarily-changing inputs...just like dataflow

= The target of a continuous assignment is a net driven by combinational logic

m Left side of the assignment must be a scalar or vector net or a concatenation of scalar
and vector nets. It can’t be a scalar or vector register (discussed later). Right side can be
register or nets

m Dataflow operators are fairly low-level:

o Conditional assignment: (conditional_expression) ? (value-if-true) : (value-if-false);
O Boolean logic: ~, &, |
O Arithmetic: +, -, *

= Nested conditional operator (4:1 mux)
O assign out = s1 ? (s0 ? 13 : 12) : (s0? 11 : 10);

"
Gate Level Description

module muxgate (a, b, out,

outbar, sel);

input a, b, sel; a —)
output out, outbar; out1
wire outl, out2, selb; sel
and al (outl, a, sel); §§7 — out
not il (selb, sel);

and a2 (out2, b , selb); selb } out? -D"_ Outbar
or ol (out, outl, out2);

assign outbar = ~out;

endmodule

m Verilog supports basic logic gates as primitives
0 and, nand, or, nor, xor, xnor, not, buf
O can be extended to multiple inputs: e.g., nand nand3in (out, in1, in2,in3);
Obufifl and bufifo are tri-state buffers

= Net represents connections between hardware elements. Nets are
declared with the keyword wire.

"
Procedural Assignment with always

= Procedural assignment allows an alternative, often higher-level, behavioral
description of combinational logic

m Two structured procedure statements: initial and always
m Supports richer, C-like control structures such as if, for, while,case

module mux 2 to 1l(a, b, out,
outbar, sel);
input a, b, sel;
output out, outbar;

Exactly the same as before.

Anything assigned in an always
reg out, outbar; block must also be declared as
type reg (next slide)

Conceptually, the always block
always @ (a or b or sel) runs once whenever a signal in the
sensitivity list changes value

begin

iilf (Bel)t ou:,.g aj Statements within the always
else out = D; block are executed sequentially.

outbar = ~out; Order matters!

Surround multiple statements in a

end single always block with begin/end.

endmodule

"
Verilog Registers

= In digital design, registers represent memory elements

m Digital registers need a clock to operate and update their
state on certain phase or edge

m Registers in Verilog should not be confused with hardware
registers

m In Verilog, the term register (reg) simply means a variable
that can hold a value

m Verilog registers don’t need a clock and don’t need to be
driven like a net. Values of registers can be changed
anytime in a simulation by assuming a new value to the
register

" S
Mix-and-Match Assignments

m Procedural and continuous assignments can (and often do) co-exist

within a module

m Procedural assignments update the value of reg. The value will remain
unchanged till another procedural assignment updates the variable.
This is the main difference with continuous assignments in which the
right hand expression is constantly placed on the left-side

module mux 2 to 1l(a, b, out,
outbar, sel);
input a, b, sel;
output out, outbar;
reg out;

always @ (a or b or sel)
begin
if (sel) out = a;
else out = b;
end

assign outbar = ~out;

endmodule

out
b=—0 outbar

sel

procedural
description

continuous
description

" B
The case Statement

m case and if may be used interchangeably to implement
conditional execution within always blocks

m case is easier to read than a long string of if. . .else statements

module mux 2 to l1l(a, b, out, module mux 2 to 1l(a, b, out,
outbar, sel); outbar, sel);
input a, b, sel; input a, b, sel;
output out, outbar; output out, outbar;
reg out; reg out;
always @ (a or b or sel) always @ (a or b or sel)
begin begin
if (sel) out = a; case (sel)
else out = b; 1’bl: out = a;
end 1’b0: out = b;
endcase
assign outbar = ~out; end
endmodule assign outbar = ~out;
endmodule

Note: Number specification notation: <size>'<base><number>
(4'b1010 if a 4-bit binary value, 16’h6cda is a 16 bit hex number, and 8'd40 is an 8-bit decimal value)

"
The Power of Verilog: n-bit Signals

m Multi-bit signals and buses are easy in Verilog.
m 2-to-1 multiplexer with 8-bit operands:

module mux 2 to 1l(a, b, out,
outbar, sel);
input[7:0] a, b;
input sel;
output [7:0] out, outbar;
reg(7:0] out;

always @ (a or b or sel)
begin

if (sel) out = a;

else out = b;
end

assign outbar = -~out;
endmodule

Concatenate signals using the { } operator

assign {b[7:0],b[15:8]} = {a[15:8],al[7:0]1};
effects a byte swap

"
The Power of Verilog: Integer Arithmetic

= Verilog’s built-in arithmetic makes a 32-bit adder easy:

module add32(a, b, sum);
input[31:0] a,b;
output [31:0] sum;
assign sum = a + b;
endmodule

m A 32-bit adder with carry-in and carry-out:

module add32 carry(a, b, cin, sum, cout);
input[31:0] a,b;
input cin;
output [31:0] sum;
output cout;
assign {cout, sum} = a + b + cin;
endmodule

"
Dangers of Verilog: Incomplete
Specification

Goal: Proposed Verilog Code:

module maybe mux 3tol(a, b, c,
sel, out);

R input [1:0] sel;
a =00 input a,b,c;
output out;
b —o01 [~ out reg out;
C -
10 always @(a or b or ¢ or sel)
/’1:: begin

case (sel)

sel 2'b00: out = aj;
2'b01l: out = b;
3't°'1 MUX 2'bl1l0: out = Cc;
(‘11" input is a don't-care) endcase
end
endmodule

Is this a 3-to-1 multiplexer?

" S
Incomplete Specification Infers Latches

module maybe mux 3tol(a, b, ¢, Synthesized Result:

sel, out);

input [1:0] sel;

input a,b,c; \

output out; —
reg out; : 00
b —01 D Q= out
always @(a or b or ¢ or sel)
begin C —410
case (sel) G
2'b00: out = a; 2
2'b01l: out = b;
2'b10: out = c; sel
endcase

end sel[1] — b
endmodule sel[0] —

if out is not assigned

s Latch memory “latches”

during any pass through old data when G=0 (we
the always block, then the will discuss latches later)
previous value must be m In practice, we almost

retained! never intend this

"
Avoiding Incomplete Specification

always @(a or b or ¢ or sel)

o begin
m Precede all conditionals out .(1'11,,):,
- . case se
with a default assignment 2'b00: out = a;
for all signals assigned 2'b01: out = b;
within them... 2'bl0: out = c;
endcase
end
endmodule
always @(a or b or ¢ or sel) .
begin m ...or, fully specify all
cawe2 (;:3) . branches of conditionals and
' : out = a; . . —
2'b01: out = b assign all signals from all
2'b10: out = c; branches
default: out = 1’'bx; .
endcase 0O Foreach if, include else

end 0O For each case, include default
endmodule

The Sequential always Block

m Edge-triggered circuits are described using a sequential

always block

Combinational

module combinational(a, b, sel,
out) ;
input a, b;
input sel;
output out;
reg out;

always @ (a or b or sel)
begin

if (sel) out = a;

else out = b;
end

endmodule

out

sel

Sequential
module sequential(a, b, sel,
clk, out);
input a, b;

input sel, clk;
output out;
reg out;

always @ (posedge clk)
begin
if (sel) out <= a;
else out <= b;

end
endmodule
a=-—1
D Qp— out
b—
0 l'>

sel clk

" S
Importance of the Sensitivity List

m The use of posedge and negedge makes an always block sequential
(edge-triggered)

s Unlike a combinational always block, the sensitivity list does
determine behavior for synthesis!

D Flip-flop with synchronous clear D Flip-flop with asynchronous clear
:g::’];e :)tf_sync_clear(d, ey module dff async_clear(d, clearb, clock, q);
: input d, clearb, clock;
input d, clearb, clock; output q;
reg q;
always @ (posedge clock) always @ (negedge clearb or posedge clock)
begin begin
if (!clearb) q <= 1'b0; if (lclearb) q <= 1’'b0;
else q <= d; else q <= d;
end end
T endmodule
always block entered only at always block entered immediately
each positive clock edge when (active-low) clearb 1s asserted

Note: The following is incorrect syntax: always @ (clear or negedge clock)
If one signal in the sensitivity list uses posedge/negedge, then all signals must.

* Assign any signal or variable from only one always block, Be
wary of race conditions: always blocks execute in parallel

) Simulation

* DFF with Synchronous Clear

Mecwrents and settingslamanthaVny docomentsVS 111 Wwerilsglecture S\ _sync_clear - [N _sync_chear
N x

NAX«pas | -«
S MAGepha Tl M PR View Node g Utles Opters Wi e

098 M ORBERPL DA UGG TR B
Ly | Rt 10005z &ls] nme (374602 ntorat |74 Sec | A
100 Crg
it . Ors S00 Ons 500 O
[1 \

A
26| Marne Ve 100 e 200 Ors 300 003
o + f \

= |1 i F

clhaad

g:-w ¢ 0 J

B, \ / \—/\ >)
ca Clear on Clock Edge

* DFF with Asynchronous Clear

NAX plas I - ¢ Mocuments and settings \enant halery documents)s. 111 werlagllecture S\ async clear - [_async_clear scf - Waweform [ditos)
. B

g MBakell Fe Gt Ve ode oy Uk Optess Wedow be;

DEge ¢ (WiRBEERL GRAEEE 2222 A
N B Ss] T Bl B -
A a:x"’ =
Yare Vit Alles Al 20w es L U e L= Y i L
» . = X00e 30 Dn Zac 500 B0 70D BCC 00 o iC
= 2
chxk 0 l

o | |
: VAN I
\Clear happens on falling edge of clearb 5

pop

"
Blocking vs. Nonblocking Assignments

= Verilog supports two types of assignments within always blocks, with
subtly different behaviors.

m Blocking assignment: evaluation and assignment are immediate

always @ (a or b or c)

begin
X =a | b; 1. Evaluate a | b, assign result to x
y=a”>b” c; 2. Evaluate a*b”c, assign resultto y
Z =Db & ~C; 3. Evaluate b&(~c), assign result to z
end

m Nonblocking assignment: all assignments deferred until all right-hand
sides have been evaluated (end of simulation timestep)

always @ (a or b or c)

begin
a | b; 1. Evaluate a | b but defer assignment of x
a”b"® c; 2. Evaluate a*b”c but defer assignment of y
b & ~c; 3. Evaluate b&(~c) but defer assignment of z
end

= Sometimes, as above, both produce the same result. Sometimes, not!

Assignment Styles for Sequential Logic

Flip-Flop Based q1 q2
Digital Delay " [° ¢ 1° 9—1° ¢ °*
Line g |‘>_
clk !

= Will nonblocking and blocking assignments both produce
the desired result?

module nonblocking(in, clk, out); module blocking(in, clk, out);
input in, clk; input in, clk;
output out; output out;
reg ql, g2, out; reg ql, g2, out;
always @ (posedge clk) always @ (posedge clk)
begin begin
gl <= in; ql = in;
g2 <= ql; g2 = ql;
out <= g2; out = q2;
end end

endmodule endmodule

Use Nonblocking for Sequential Logic

always @ (posedge clk) always @ (posedge clk)
begin begin
gl <= in; gl = in;
q2 <= ql; q2 = ql;
out <= g2; out = g2;
end end
“At each rising clock edge. g/. ¢2. and our “At each nising clock edge. g/ = in.
siumultaneously receive the old values of in, After that. g2 =gql =in.
ql,and g2." After that. our=q2 = ql = in.

Therefore out = in.”

q1 q2 _ q1 q2
in—D Q=D Q=D Q— out in —p Q out
>

clk r> r> T clk _.r

m Blocking assignments do not reflect the intrinsic behavior of multi-stage
sequential logic

m Guideline: use nonblocking assignments for sequential
always blocks

v

Simulation

*Non-blocking Simulation

11 v rtagiiec te e Mineabiociong - [rondleckdng acf - Wam'smn [e

MAX phn ¢ \doc ey and e tringiananchaeny docime rivid

WD Ne L4 See A AW UBeM Cgnore Ardes wb

D@ as O OSRELSL DA AR URRT S
b | P 030w 28] vew [mases | eterad 533 due J o
A
B e Do L 10C O 0 Oy J Crs 1004 S ey W Ora W, ra
—— 1T 1 " | | |
—— > | i
L q! 3 l
Rhew o) r 7
(54
Bl o o > |
-
L 3

v 11 Ve rilegVecta e S\bieching [Slockdng sc! Wawsfom [éhe

MAXplam B cVocwrerts and sertings\ana ey focerw
9 'MNEcial P EM Yes Mok Amgr Bam Ophors Wedsw g

-Ox

Dsea PO MOREREZDRDA SSR UEXT
&R [MDow [BIS) e aa e] Wit 1A | L]
A i‘I_lj.'s
x'.;— . U.'n\.’- ° e ;:cim- XT) Dea 430 o0 Cea 500 Crve ::t{h- 0 Dea
- S 1
|t | ,
R e = [
a b 4
e »

Use Blocking for Combinational Logic

module blecking(a,b,c,x,y);

Blocking Behavior abc xy crenenesnsrenranranees - isput &.b,0
: : output X,y;
(Given) Initial Condition | 110 11 g : X reg X,y
a changes; ; ; 1 @ b
alwaysg block triggered 010 11 c - -y :.;23’.‘ worbor e
X =a & b; 010 01 ;:;Tt’
Yy =x| c; 01000 ond
endmodule
Nonblocklng Behavior abc x y Deferred module nonblocking(a,b,c,x,y);
input a,b,c
(Given) Initial Condition | 110 11 output %,¥:
a changes;) 010 11 reg X,¥i
always block triggered always @ (a or b or ¢)
X <= a & b; 010 11 | x<=0 e s & b}
y <= x | ¢; 010 11 | x<=0, y<=1 W xle
Assignment completion | 010 01 endmodule

= Nonblocking and blocking assignments will synthesize correctly. Will both
styles simulate correctly?

= Nonblocking assignments do not reflect the intrinsic behavior of multi-stage
combinational logic

= While nonblocking assignments can be hacked to simulate correctly (expand
the sensitivity list), it's not elegant

m Guideline: use blocking assignments for combinational always blocks

"
Dangers of Verilog : Priority Logic

Goal: Proposed Verilog Code:
4-to-2 Binary Encoder module binary encoder (i, e);
input [3:0] i;
0 -1, output [1:0] e;
1 — '2 E1 —1 reg @i
0 — = el always @(i)
0 — Iy begin
if (i[0]) e = 2'b00;
else if (i[1l)]) e = 2'b01;
I, 11, | E4Ey else if (i[2]) e = 2’'b10;
0001 00 else if (i'[3]) e = 2'b11;
else e = 2'bxx;
0010 | 01 ena
0100 10 endmodule
1000 11
allothers| XX

What is the resulting circuit?

" S
Priority Logic

Intent: if more than one input is Code: if i[0] is 1, the result is 00
1, the result is a don’t-care. regardless of the other inputs.
i[0] takes the highest priority.
|3 l? I1 IO EI ED
0001 00 if (i[0]) e = 2'b00;
0010 | 01 else if (i[1l]) e = 2’b01;
else if (i[2)) e = 2’bl0;
0100 10 else if (i[3]) e = 2’bl1l;
1000 11 else e = 2'bxx;
allothers | X X end
Inferred 11 4, 2b10-1] 26011) 2b00— 4
Result: e[1:0]
2'bXxX == 0 0 0 ;

i3] i[2] if1] i0]

m if-else and case statements are interpreted very literally!
Beware of unintended priority logic.

"
Avoiding (Unintended) Priority Logic

m Make sure that if-else and case statements are parallel
o If mutually exclusive conditions are chosen for each branch...

o ...then synthesis tool can generate a simpler circuit that evaluates
the branches in parallel

Parallel Code: Minimized Result:

module binary encoder(i, e);
input [3:0] i;
output [1:0] e;

reg e; |3 EO
always @(i)
begin h
if (i == 47b0001) e = 2'b00; | E;
else if (i == 4/b0010) e = 2’b01; .

else if (i == 4’'b0100) e = 2'b10;
else if (i == 4’b1000) e = 2'bll;
else e = 2'bxx;
end
endmodule

" S
Interconnecting Modules

= Modularity is essential to the success of large designs
= A Verilog module may contain submodules that are “wired together”

= High-level primitives enable direct synthesis of behavioral descriptions (functions such
as additions, subtractions, shifts (<< and >>), etc.

Example: A 32-bit ALU Function Table
A[31:0] BI[31:0]
i | F2 F1 FO | Function
32'd1 32'd1 ! 000 A+B
| | - 0 0 1 A+1
0_1/; 0 14 F[0] 3
\—'—/ 010 A-B
1\: :) " F[2:0] 011 | A-1
: 1 0 X A*B
— | — e
\ 00 01 104
F[2:1]

|
R[31:0]

" S
Module Definitions

2-to-1 MUX 3-to-1 MUX

sucdule 32two (10,11, sel,out) ; module mux32three(i0,11,12,8el,0ut);
input ([31:0] 10,11,12;
input sel; y

output [31:0]) out;
output [31:0] out; rogp[31}0] oLt;

assign out = sel ? 11 : 10; always @ (10 or 11 or 12 or sel)
begin
endmodule case (sel)

2'b00: out = 10;
2'’b01: out = 11;
2'b10: out = 12;
default: out = 32'bx;
endcase
end
endmodule

32-bit Adder 32-bit Subtracter 16-bit Multiplier

module mullé (10,11,prod);
module add32(10,11,sum); module sub32(10,11,41ff); input ([15:0) 10,11;

input ([31:0] 10,11; input [31:0) 10,11; output [31:0]) prod;
output [31:0] sum; output [31:0) d4iff;

// this 1s a magnitude multiplier
10 - 11; // signed arithmetic later
assign prod = 10 * 1i1;

assign sum = 10 + 11; assign diff

endmodule endmodule
endmodule

"
Top-Level ALU Declaration

m Given

module
module
module
module
module

m Declaration of the ALU Module:

submodules:

mux32two (10,11,sel,0ut) ;

mux32three(10,11,12,8el,0ut);

add32(10,11,sum);
sub32(10,11,4d1ff);
mullé (10,11,prod) ;

module alu(a, b, £, r);
input [31:0] a, b;
input [2:0] £;
output [31:0] r;

wire [31:0] addmux out, submux out;
wire [31:0] add out, sub out, mul out;

adder mux(b, 32'dl, £[0], addmux out);
sub mux (b, 32'dl, f[0], submux out);
our adder (a, addmux out, add out);
our subtracter(a, submux out, sub out);
our multiplier(a[l5:0], b[15:0], mul out);

mux32two
mux32two
add32
sub32
mullé

A[31:0] B[31:0]

} L alu

32'd1 32'd1
' ' F[0]
4= F[2:0]
F[2:1])
R[31:0]
———_| intermediate output nodes ¢

mux32three output mux(add out, sub out, mul out, f[2:1], r);

endmodule [madule }unique)

AN

\

nstance
names

names

corres ing
wires/regs in
module alu

WAX ¢ plus Il - ¢:\ocumenls and settingslananthaldeskiopiverilog examples lactwre Ty - [ala.scf - Wavelerm Edito

Simulation

J

QIpisl Fle Bt lew fode Jeip Ulties Cpro Wndw Hep -3
DERd " cronbRBEERSDRAEERSR22E
NERETE |E|§| Tne: [20 et | 7260 A
A 539
W | ame Viw | m M s mﬁ&s s !
- /o N G N RN
| {i £C0000CE FEFFSE

. -
. FFFFFFFF
- FEFFFFFF
g% (00

A\ o

addition

subtraction

multiplier

=
More on Module Interconnection

m Explicit port naming allows port mappings in arbitrary
order: better scaling for large, evolving designs

Given Submodule Declaration:
module mux32three(io0,il,i2, sel,out);

Module Instantiation with Ordered Ports:

mux32three output mux(add out, sub out, mul out, f£[2:1], r);

Module Instantiation with Named Ports:
mux32three output mux(.sel (£[2:1)), .out(r), .i0(add out),
.il(aub_put), .12 (mul out));

submodule’s co‘:'r;:’)ondlng
portname || ouiter module

= Built-in Verilog gate primitives may be instantiated as well

o Instantiations may omit instance name and must be ordered:
buf (outl,out2, ..., outN, in); and(inl,in2,...inN,out);

" S
Useful Boolean Operators

m Bitwise operators perform bit-sliced operations on vectors
0 ~(4’b0101) = {~0,~1,~0,~1} =4’b1010
04'b0101 & 4’b0011 = 4’b0001

m Logical operators return one-bit (true/false) results
O (4’b0101) =~1=1b0

m Reduction operators act on each bit of a single input vector
O &4'b0101)=0&1&0&1=1Db0

m Comparison operators perform a Boolean test on two arguments

Bitwise Logical Reduction Comparison
~a NOT la NOT &a AND g g
a&b | AND a&b | AND ~& | NAND a <= g Relational
a>=
alb OR alb | On | OR a==b [in]equality
a“b | XOR ~| NOR al=b returns x whEen X
in bits. El
a~"b | XNOR " | XOR retums Oor 1
Note distinction between ~a and 'a aaT::S [in]g:ieality
returns O or 1
based on bit by bit
comparison

Testbenches (ModelSim)

Full Adder (1-bit)

module full_adder (a, b, cin,
sum, cout);

input a. b, cin;
output sum, cout;
reg sum,cout;

always @(a or b or cin)
begin
sum=a*b*cin;

cout=(a&b)|(a&cin)| (b &cin);

end
Endmodule

ModelSim Simulation

=i wave - default

File Edt View Insert Format Tools Window

Full Adder (4-bit)

module full_adder_4bit (a, b, ¢in, sum,

cout);
input[3:0] a, b;
input cin;

output [3:0] sum;
output cout;

wire c1,¢2, ¢3;

// instantiate 1-bit adders

full_adder FA0(a[0],b[0], cin, sum[0], c1);
full_adder FA1(a[1),b[1], ¢1, sum[1], c2);
full_adder FA2(a[2),b[2]), c2, sum[2], c3);
full_adder FA3(a[3),b[3], c3. sum[3], cout);
endmodule

=10l x|

|gna|| xmnu” Q)&E_r| ngn@.@&.:x%L

[0 ns to 272 ns

I T %

Testbench

module test_adder;
reg [3:0] a, b;
reg cin;
wire [3:0] sum;
wire cout;

full_adder_4bit dut(a, b, cin,
sum, cout);

initial
begin

a=4'p0000;

b = 4'b0000;

cin = 1'b0;

#50;

a=4'h0101;

b=4'b1010;

i/ sum=1111, cout=0

#50;

a=4'b1111;

b =4'b0001;

// sum = 0000, cout =1
#50;

a =4'b0000;

b=4'b1111;

cin= 1b1;

// sum = 0000, cout = 1

#50;

a=4'h0110;

b = 4'b0001;

// sum = 1000, cout=0

end // initial begin

endmodule // test_adder

" S
Summary

m Multiple levels of description: behavior, dataflow, logic and
switch

m Gate level is typically not used as it requires working out
the interconnects

m Continuous assignment using assign allows specifying
dataflow structures

m Procedural Assignment using always allows efficient
behavioral description. Must carefully specify the
sensitivity list

m Incomplete specification of case or if statements can
result in non-combinational logic

m Verilog registers (reg) is not to be confused with a
hardware memory element

» Modular design approach to manage complexity

Advance Verilog

" A
Parameter

= Parameters are useful because they can be redefined on a module
instance basis. That is, each different instance can have different
parameter values. This is particularly useful for vector widths.

= For example, the following module implements a shifter:
module shift (shiftOut, dataIn, shiftCount);
parameter width = 4;
output [width-1:0] shiftOut;
input [width-1:0] dataln;
input [31:0] shiftCount;
assign shiftOut = dataln << shiftCount;
endmodule

= This module can now be used for shifters of various sizes, simply
by changing the width parameter.

" A
Define Parameter Value

= There are two ways to change parameter values from their
defaults, defparam statements and module instance
parameter assignment.

The defparam statement allows you to change a module

instance parameter directly from another module. This is
usually used as follows:

shift shl (shiftedval, inVal, 7); //instantiation
defparam shl.width = 16; // parameter redefinition

Parameter values can be specified in the module instantiation
directly. This is done as follows:

shift #(16) shl (shiftedval, inVal, 7);
//instance of 16-bit shift module

" A
Task and Function

= Tasks and functions are declared within modules. The
declaration may occur anywhere within the module, but it
may not be nested within procedural blocks. The declaration
does not have to precede the task or function invocation.

= Tasks may only be used in procedural blocks. A task
iInvocation, or task enable as it is called in Verilog, is a

statement by itself. It may not be used as an operand in an
expression.

= Functions are used as operands in expressions. A function
may be used in either a procedural block or a continuous
assignment, or indeed, any place where an expression may
appear.

=
Task

= Tasks may have zero or more arguments, and they may be
iInput, output, or inout arguments.

task do read;
input [15:0] addr;
output [7:0] wvalue;

begin
adbus reg = addr; // put address out
adbus en = 1; // drive address bus

@ (posedge clk) ; // wait for the next clock
while (~ack)
@ (posedge clk); // wait for ack

value = data bus; // take returned value

adbus en = 0; // turn off address bus

count = count + 1; // how many have we done
end

endtask

"
Function

= In contrast to tasks, no time or delay controls are allowed in a
function. Function arguments are also restricted to inputs only.
Output and inout arguments are not allowed. The output of a function

Is indicated by an assignment to the function name. For example,
function [15:0] relocate;

input [11:0] addr;

input [3:0] relocation factor;

begin
relocate = addr + (relocation factor<<l?);
count = count + 1; // how many have we done
end
endfunction

= The above function might be used like this:
assign absolute address = relocate(relative address, rf);

" J———_
System Task

= System tasks are used just like tasks which have been
defined with the task ... endtask construct. They are
distinguished by their first character, which is always a

||$||.
= There are many system tasks, but the most common
dare.
Sdisplay, Swrite, Sstrobe
smonitor
Sreadmemh and Sreadmemb
Sstop
$finish

" S
Example of System Task

= The Swrite system task is just like Sdisplay, except
that it does not add a newline character to the output

string.
= Example:
Swrite (Stime," array:");
for (1=0; 1i<4; i=i+1) write (" %h", arrayl[i]);

Swrite ("\n");
This would produce the following output:
110 array: 5a5114b3 087026l1la 0678448d 4e8a’/’l’l6

" J——
System Function

= Likewise, system functions are used just like
functions which have been defined with the
function ... endfunction construct. Their first

character is also always a "$".

= There are many system functions, with the
most common being:
Stime ($stime)
Srandom
Sbitstoreal

" S
Example of System Function

= The $Stime system function simply returns the current
simulation time. Simulation time is a 64-bit unsigned
guantity, and that is what Stime is assumed to be when
It is used in an expression.

= Sstime (short time) is just like $time, except that it
returns a 32-bit value of time.
= Example:

Sdisplay ("The current time is %d", $time);

Sdisplay (Stime," now the value of x is %h", x);

" A
Conversion Function

$rtoi(real value) _ module driver (net r);
Returns a signed integer, truncating output net r; -
the real value. real r: -
Sitor (int wval) wire [64:1]
Returns the integer converted to a net r = Srealtobits(r);
real value. endmodule
Srealtobits (real value) module recelver (net_r);
Returns a 64-bit vector with the bit input net_r;
representation of the real number. wire [64:1] net r;
$bitstoreal (bit value) real r;
Returns a real value obtained by always € (net_r)
interpreting the bit_value argument r = vYbitstoreal (net_r);
as an IEEE 754 floating point endmodule
number.

"
XMR

= Verilog has a mechanism for globally referencing
nets, registers, events, tasks, and functions called the
cross-module reference, or XMR. This is in marked
contrast to VHDL, which rejected the concept.

= Cross-module references, or hierarchical references
as they are sometimes called, can take several
different forms:

References to a Different Scope within a Module
References between Modules
Downward Reference

Upward Reference

Hierarchical Module

= There is a static scope within each module definition with which one can locate any

identifier. For example, in the following,

module A;

reg x; // 1

task B;

reg x; // 2
begin

begin: C
reg x; // 3

end
end
endtask

initial
begin: D
reg x;

end
endmodule

//

4

" S
Reference to Scopes within Module

= there iIs a module, a task, and two named
blocks. There are four distinct registers,
each named x within its local scope.

register |is contained in is hamed
1 module A Ax

2 module A task B AB.x

3 module A task B block C | AB.C.x

4 module A block D AD.x

Coding Styles

"
Memory

= The following are examples of memory
declarations.

reg [7:0] memdata[0:255];// 256 8-bit registers
reg [8%*6:1] strings[1:10];// 10 6-byte strings
reg membits [1023:0];// 1024 1-bit registers

= The maximum size of a memory is
Implementation-dependent, but is at least
2724 (16,777,216) elements.

" S
Access to Memory

= A memory element is accessed by means of a memory index
operation. A memory index looks just like a bit-select:
mem|[index]

= Another limitation on memory access is that you can't take a
bit-select or part-select of a memory element. Thus, if you
want to get the 3rd bit out of the 10th element of a memory,
you need to do it in two steps:

reg [0:31] temp, mem[1:1024];

temp = mem[10];
bit = temp[3];

" A
Finite State Machine

= There are two common variations of state machines,

Mealy and Moore machines.

= Mealy machines produce outputs based on both current state and input.

= Moore machines produce outputs based only on the current state. As
you would expect, the Verilog representation of the two types is very
similar.

= Typically, the clock is used to change the state based on
the inputs which have been seen up to that point. It is
often convenient to think of all the activity of the state
machine as taking place on the clock edge:
= sample inputs
= compute next state
= compute outputs

= change state
= produce outputs

" A
Finite State Machine

= Finite state machines are one of the common types
of logic designed using Verilog. There are several
ways to represent them:
= Implicit
= Explicit
= State machines always have inputs, a state variable
or set of variables (sometimes called a state vector),
and a clock. The clock does not have to be periodic,
but there must be some strobe signal which indicates
when the state transition decision should be made.

Implicit Coding

An implicit FSM is
simply one whose
state encoding is
done by means of
procedural code. In
essence, the
program counter is
the current state
variable.

module stateMachine (dout, din, clock);
output dout;
input din, clock;
req dout;

always begin
@(posedge clock)
dout = din; /{ instate &

if {din == 0)

begin

@(posedge clock)
dout = 0; /finstate B
while {din)

@(posedge clock) ;

dout = 1;

end

@ (posedge clock)
dout = din; /{instate C
end
andmodule

" J—
Explicit Coding

Representing FSMs
explicitly is a better
style than implicit
coding, both because
the code maps well to a
state transition table
and also because
explicit representation
IS synthesizable.

module stateMachine (dout, din, clodk);

output dout;
input din, clock;

‘define A 2'b001
‘define B 3'b010
‘define C 2'b100

req dout;
reg [2:0] state;
initial state = "A;

always @(posedge clock)
case (state)
‘A: begn
dout <= din;

state <=din? C:

end
‘B: begn
dout <= ~din;

state <=din? B :

end

‘C: begn
dout <= din;
state <= "A;
end
endcase

endmodule

'B;

'C;

Explicit Coding

The following is an
example of using an
always block for next
state logic. This style
IS probably more
common, but it is
really no different
than the first version.

“define A 3'b001

“define B 3'b010

“define C 3'b100

module stateMachine (dout, din, clock);
output dout;
input din, clock;

reg [2:0] state, nextstate;
initial state = "A;

assign dout = state=="A471: // Output Logic
state=="B70:
state=="C?1: 1'bx;

always @(posedge clock)
state <= nextstate;

/{ State Memory

always @(state or din)
case (state)
‘A nextstate =din? 'C: 'B;
‘B: nextstate =din? B: 'C;
‘C: nextstate = A;
endcase
endmodule

/{ Next State Logic

"
Pipeline

= Pipelines, queues, and FIFOs are common
logic structures which are all related, in the
sense that data moves from one storage
location to another synchronously, based
on a strobe signal, usually a clock.

in > stage 1 | » stage 2 | » stage 3 | out o

" S
Pipeline Coding

module pipeline (out, 1in, clock);
output out;

input in, clock;

reg out, pipell:2];

always @ (posedge clock)

begin
out = pipel[2];
pipel2] = pipelll];
pipell] = 1in;
end

endmodule

= This code works fine. The only potential problem is that out changes value on
the clock edge, so whatever takes it as an input may get the wrong value.

" JE—
Pipeline Coding

= A better version would be to use a non-blocking assign:

always @ (posedge clock)
begin

out <= pipel2];

pipel[2] <= pipell];
pipel[l] <= 1n;

end

= Note that with the non-blocking assign, the order of the
assignment statements is irrelevent.

Pipe Stage as Separate Module

It IS common to
make a single
pipe stage

module and use it

repetitively, as
follows:

module pipeline {out, in, clock);
output out,
input in, clock;
wire slouf, s2out;

pipestage s1 (slout, in, clock),
s2 (s2out, slout, clock),
s3 (out, s2out, clock);
endmodule

module pipestage {out, in, clock);
output out;
input in, clock;
req ouf;

always @(posedge clock)
out <= in;
endmodule

" JEE
Combinational Logic in Pipeline

It iS m_ore intereSting |f module pipeline (out, in, clock);

there is some outpLE oLt

combinational logic et i, cock
wire slout, s2out, slin, s2in, s3in;

associated with each pipe

stage. Suppose each stage assign slin = f1(in),

has some Iogbic s2in = 2(slout,

represented by a function o s

f1, f2, f3 which is applied to pipestage s1 (slout, slin, clock),
PP

the input_ s2 (s2out, s2in, clock),

endmodule

s3 (out, s3in, clock);
Ot

" A
Race Condition

= The implication of all this is that you had better not write
Verilog code which has a different result depending on the
order of execution of simultaneous, unordered events. This

IS known generally as a race condition, and it occurs when
one event samples a data value, another event changes

the data value, and the two events are unordered with
respect to each other.

= Example:
always @ (posedge clock) dffl = f(x);
always @ (posedge clock) dff2 = dffl;

= This attempt at a pipeline doesn't work, because the value
of dff2 may be either the old or the new value of dff1

