差别
这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
开发板2 [2016/07/01 09:53] shuncheng [电路解析] |
开发板2 [2016/07/01 10:29] (当前版本) shuncheng |
||
---|---|---|---|
行 1: | 行 1: | ||
====== ADI EVAL-CN0234-SDPZ 开发板====== | ====== ADI EVAL-CN0234-SDPZ 开发板====== | ||
- | {{:cn0234-hw-1024.jpg|}} | + | {{ :cn0234-hw-1024.jpg |}} |
- | **EVAL-CN0234-SDPZ开发板简介!** | + | **EVAL-CN0234-SDPZ开发板简介** |
在这里你可以获取到EVAL-CN0234-SDPZ开发板所有的参考资料。 | 在这里你可以获取到EVAL-CN0234-SDPZ开发板所有的参考资料。 | ||
行 41: | 行 41: | ||
* 上图显示电化学传感器测量电路的原理示意图。电化学传感器的工作原理是允许气体通过薄膜扩散到传感器内,并与工作电极(WE)相互作用。传感器参考电极(RE)提供反馈,以便通过改变反电极(CE)上的电压保持WE引脚的恒定电位。WE引脚上的电流方向取决于发生的反应是氧化还是还原。在一氧化碳情况下发生的是氧化;因此,电流会流入工作电极,这要求反电极相对于工作电极处于负电压(通常为300 mV至400 mV)。驱动CE引脚的运算放大器相对于 VREF 应具有±1 V的输出电压范围,以便为不同类型的传感器(Alphasense应用笔记AAN-105-03,设计恒电位电路,Alphasense公司)提供充足裕量。 | * 上图显示电化学传感器测量电路的原理示意图。电化学传感器的工作原理是允许气体通过薄膜扩散到传感器内,并与工作电极(WE)相互作用。传感器参考电极(RE)提供反馈,以便通过改变反电极(CE)上的电压保持WE引脚的恒定电位。WE引脚上的电流方向取决于发生的反应是氧化还是还原。在一氧化碳情况下发生的是氧化;因此,电流会流入工作电极,这要求反电极相对于工作电极处于负电压(通常为300 mV至400 mV)。驱动CE引脚的运算放大器相对于 VREF 应具有±1 V的输出电压范围,以便为不同类型的传感器(Alphasense应用笔记AAN-105-03,设计恒电位电路,Alphasense公司)提供充足裕量。 | ||
* 流入WE引脚的电流对于每ppm气体浓度低于100 nA;因此将此电流转换为输出电压需要具有极低输入偏置电流的跨阻放大器。ADA4505-2运算放大器在室温下具有最大输入偏置电流为2 pA的CMOS输入,因此很适合这种应用。2.5 V ADR291为电路建立伪地基准电压,因此支持单电源供电同时消耗极低的静态电流。放大器U2-A从CE引脚吸取足够的电流,以便在传感器的WE和RE引脚间保持0 V电位。RE引脚连接到U2-A的反相输入;因此其中无电流流动。这意味着电流从WE引脚流出,随气体浓度呈现线性变化。跨阻放大器U2-B将传感器电流转换为与气体浓度成正比的电压。 | * 流入WE引脚的电流对于每ppm气体浓度低于100 nA;因此将此电流转换为输出电压需要具有极低输入偏置电流的跨阻放大器。ADA4505-2运算放大器在室温下具有最大输入偏置电流为2 pA的CMOS输入,因此很适合这种应用。2.5 V ADR291为电路建立伪地基准电压,因此支持单电源供电同时消耗极低的静态电流。放大器U2-A从CE引脚吸取足够的电流,以便在传感器的WE和RE引脚间保持0 V电位。RE引脚连接到U2-A的反相输入;因此其中无电流流动。这意味着电流从WE引脚流出,随气体浓度呈现线性变化。跨阻放大器U2-B将传感器电流转换为与气体浓度成正比的电压。 | ||
- | * 此电路笔记选择的传感器是Alphasense CO-AX一氧化碳传感器。表1显示与此常见类型的一氧化碳传感器相关的典型规格。 | + | * 此电路笔记选择的传感器是Alphasense CO-AX一氧化碳传感器。下列是常见类型的一氧化碳传感器相关的典型规格。 |
* 灵敏度 55 nA/ppm至100 nA/ppm (典型值,65nA/ppm) | * 灵敏度 55 nA/ppm至100 nA/ppm (典型值,65nA/ppm) | ||
* 响应时间(t90,0 ppm至400 ppm CO) <30秒 | * 响应时间(t90,0 ppm至400 ppm CO) <30秒 | ||
行 48: | 行 48: | ||
警告:一氧化碳是有毒气体,一旦浓度高于250 ppm便有危险;测试本电路时应格外小心 | 警告:一氧化碳是有毒气体,一旦浓度高于250 ppm便有危险;测试本电路时应格外小心 | ||
- | * **板卡所用核心器件** | + | * **常见变化** |
- | * ADR291[[http://www.analog.com/cn/products/linear-products/voltage-references/adr291.html|芯片资料]] | + | 如果使用可编程变阻器(如AD5271),而不是固定跨阻电阻(R8),本电路就可以用于不同的气体传感器,而无需改变材料清单。AD5271提供20 kΩ、50 kΩ或100 kΩ的标称电阻值。由于有256个跳变位置,因此100 kΩ选项的阶跃为390.6 Ω。AD5271的电阻温度系数为5 ppm/°C,优于大多数分立电阻;其电源电流为1 μA,对系统功耗的影响极小。虽然两节AAA电池就能为图1所示电路供电数月之久,一些应用可能需要使用外部电源运行。实施双电源配置的最有效方式是使用内置开关且具有机械断开特性的电源插座,在将外部电源插头插入插座时可自动移除电池电源。本文所述电路具有极低的功耗。使用两个 ADA4528-1 运算放大器代替ADA4505-2可大幅降低噪声,提高精度,但功耗也会增加。ADA4528-1具有实际为零的失调漂移和业界领先的低输入电压噪声。同样,ADR3425 可取代ADR291,从而获得极低温漂;但代价是功耗增加。 |
- | * ADA4505-2[[http://www.analog.com/cn/products/amplifiers/operational-amplifiers/rail-to-rail-amplifiers/ada4505-2.html|芯片资料]] | + | 最后,第一张图所显示的电路适用于与12位ADC接口,例如大多数混合信号微控制器中的内置转换器。 |
- | * ADP2503[[http://www.analog.com/cn/products/power-management/switching-power-converters/switching-regulators/adp2503.html|芯片资料]] | + | 对于必须测量气体浓度ppm比例的应用,使用ADA4528-1和ADR3425使得电路性能适合与16位ADC接口,例如AD7798或AD7171。 |
- | * AD7798[[https://wiki.analog.com/resources/tools-software/uc-drivers/renesas/ad7799|芯片资料]] | + | ===== 电路的评估与测试 ===== |
- | ===== 教程 ===== | + | 本电路使用 EVAL-CN0234-SDPZ 电路评估板和EVAL-SDP-CB1Z系统演示平台(SDP)评估板。此外,连接两个电路板需要EVAL-CN0234-SDPZ附带的小适配板。EVAL-CN0234-SDPZ包括AD7798 16位Σ-Δ型ADC,用于对电路的输出电压进行数字化处理。 |
+ | CN-0234 评估软件与SDP板通信,以从EVAL-CN0234-SDPZ电路评估板捕捉数据。 | ||
+ | * **设备要求** | ||
+ | * 需要以下设备: | ||
+ | * 带USB端口的Windows® XP、Windows Vista(32位)或Windows 7(32位)PC | ||
+ | * EVAL-CN0234-SDPZ电路评估板和适配板 | ||
+ | * EVAL-SDP-CB1Z SDP评估板 | ||
+ | * CN0234评估软件 | ||
+ | * 两节AAA电池 | ||
+ | * 校准气体(建议使用低于250 ppm的CO) | ||
+ | * **开始使用** | ||
+ | * 将CN0234评估软件光盘放入PC的光盘驱动器,加载评估软件。打开“My Computer(我的电脑)”,找到包含评估软件光盘的驱动器,打开Readme 文件。按照Readme 文件中的说明安装和使用评估软件。 | ||
+ | * **功能框图** | ||
+ | * 下图显示测试设置的功能框图。EVAL-CN0234-SDPZ-SCH PDF文件提供了完整电路原理图。此文件位于CN0234 设计支持包中。 | ||
+ | {{ :cn0234-02-1024.gif |}} | ||
+ | * **设置** | ||
+ | 将EVAL-CN0234-SDPZ上的10引脚连接器连接到适配板,将适配板的120引脚连接器连接到EVAL-SDP-CB1Z SDP评估板上的CON A连接器。使用尼龙五金配件,通过120引脚连接器两端的孔将适配板牢牢固定至SDP板。将电化学传感器连接到EVAL-CN0234-SDPZ电路评估板上的插口。 | ||
+ | |||
+ | 将电源开关滑动到关闭位置,将两节AAA电池插入电池座。 | ||
+ | |||
+ | 将SDP板附带的USB电缆连接到PC上的USB端口和SDP板。SDP板从PC的USB端口取电 | ||
- | * **使用指导说明** -- [[https://reference.digilentinc.com/basys3/gsg|Wiki]] | + | * **测试** |
- | * 对于Basys 3的新手有几点重要的建议。包含的套件内容, 开箱上电操作, 如何建立一个简单的设计. | + | 将EVAL-CN0234-SDPZ电路板上的电源开关移动到打开位置,启动评估软件。如果 “Device Manager(设备管理器)” 中出现“Analog Devices System Development Platform(ADI系统开发平台)”驱动器,软件便能与SDP板通信。一旦USB通信建立,就可以使用SDP板来发送、接收、采集来自EVAL-CN0234-SDPZ电路评估板的串行数据。 |
- | * **Basys 3 编程指导** -- [[https://reference.digilentinc.com/basys3/pg|Wiki]] | + | |
- | * 对于Basys 3上的FPGA实现不同的可行性编程方法 | + | CN0234评估软件readme文件包含有关如何使用评估软件采集数据的详细信息。SDP用户指南包含有关SDP板的信息。 |
- | + | ||
- | ===== 参考项目 ===== | + | 该电路板的输入信号是气体浓度;因此需要校准气体源。使用一氧化碳进行测试时,最大短时间接触限值为250 ppm。 |
- | + | ||
- | * **通用I/O例程** -- [[https://reference.digilentinc.com/basys3/gpiodemo|Wiki]] | + | 要执行系统校准,首先请确认不存在一氧化碳。要开始采集数据,请单击 “Start Acquisition(开始采集)”。从“Calibrate(校准)” 菜单选择 Set Zero(设置0)”。如果满意ADC读数,请单击“OK(确定)”,当前ADC读数会被存储为0点。应用校准气体,当传感器输出完全建立后,从“Calibrate(校准)”菜单中选择“Set Span(设置范围)”。输入所用校准气体的浓度,单击“OK(确定)”。如此会存储系统范围。 |
- | * 基本的例程包括使用板载开关、按钮、[[LED]]s、7段式数码管显示、[[UART]]、[[VGA]]监视器以及[[USB]]-[[HID]]鼠标,这个项目例程已经预载在出现板卡的[[SPI]] Flash中。 | + | |
- | * **算盘例程** -- [[https://reference.digilentinc.com/basys3/abacus|Wiki]] | + | 要应用系统校准数据,请选中前面板上的“Display Calibrated Data(显示校准数据)”复选框。 |
- | * 通过板载的开关输入以及7段式数码管显示输出实现几个算术运算 | + | |
- | * **XADC例程** -- [[https://reference.digilentinc.com/basys3/xadcdemo|Wiki]] | + | 如果未选中“Display Calibrated Data(显示校准数据)”复选框,程序采用默认比例值运行,即假定标称传感器响应为65 nA/ppm,无失调误差。 |
- | * 一个简单的Artix-7 XADC实现的基本演示 | + | |
+ | 要将校准数据保存到文件,请从“File(文件)”菜单中选择“Save Calibration Constants to File(将校准常数保存到文件)”。同样,选择“Load Calibration Constants from File(从文件加载校准常数)”可使用先前保存的校准数据。 | ||
+ | |||
+ | 下图显示电路对50 ppm一氧化碳阶跃的响应。传感器响应缩短了初始上升时间,而长尾现象与测试室成函数关系。 | ||
+ | {{ :cn0234-03-1024.gif |}} | ||
+ | 下图显示从50 ppm CO环境迅速移除传感器后的电路响应,它可以更好地衡量电路性能 | ||
+ | {{ :cn0234-04-1024.gif |}} | ||
------ | ------ |