**这是本文档旧的修订版!**
基于STEP FPGA的SPI RGB液晶屏显示驱动
本节将和大家一起使用FPGA驱动底板上的1.8寸RGB液晶屏实现图片显示功能。
====硬件说明====
我们的STEP-BaseBoard底板上集成了1.8寸彩色液晶屏TFTLCD模块,大家可以驱动LCD显示文字、图片或动态的波形。
首先了解一下液晶屏模块,相关资料下载:https://pan.baidu.com/s/1bp6AYsR
框图如下:
原理图如下:
原理图中的器件U1为液晶屏,液晶屏为1.8寸,128RGB160像素,串行总线(SPI),液晶屏集成了ST7735S的驱动器,处理器与ST7735S通信完成液晶屏的显示控制
ST7735S为132RGB x 162像素点 262K 控制器/驱动器,芯片可以直接跟外部处理器连接,支持串行SPI通信和8/9/16/18位并行通信(本液晶屏集成ST7735S时没有留并行接口,所以只能使用串行通信),详细参数请参考数据手册:st7735s_datasheet.pdf
====Verilog代码====
——
<code verilog>
——————————————————————–
»»»»»»»»»»»»> COPYRIGHT NOTICE ««««««««««««<
——————————————————————–
Module: LCDRGB
Author: Step
Description: Drive TFTRGBLCD1.8 to display
Web: www.stepfpga.com
——————————————————————–
Code Revision History :
——————————————————————–
Version: |Mod. Date: |Changes Made:
V1.1 |2016/10/30 |Initial ver
——————————————————————–
module LCDRGB #
(
parameter LCDW = 8'd132, 液晶屏像素宽度
parameter LCDH = 8'd162 液晶屏像素高度
)
(
input clkin, 12MHz系统时钟
input rstnin, 系统复位,低有效
output reg ramlcdclken, RAM时钟使能
output reg [7:0] ram_lcd_addr, //RAM地址信号 input [131:0] ram_lcd_data, //RAM数据信号 output reg lcd_rst_n_out, //LCD液晶屏复位 output reg lcd_bl_out, //LCD背光控制 output reg lcd_dc_out, //LCD数据指令控制 output reg lcd_clk_out, //LCD时钟信号 output reg lcd_data_out //LCD数据信号
);
localparam INIT_DEPTH = 16'd73; //LCD初始化的命令及数据的数量
localparam RED = 16'hf800; //红色
localparam GREEN = 16'h07e0; //绿色
localparam BLUE = 16'h001f; //蓝色
localparam BLACK = 16'h0000; //黑色
localparam WHITE = 16'hffff; //白色
localparam YELLOW = 16'hffe0; //黄色
localparam IDLE = 3'd0;
localparam MAIN = 3'd1;
localparam INIT = 3'd2;
localparam SCAN = 3'd3;
localparam WRITE = 3'd4;
localparam DELAY = 3'd5;
localparam LOW = 1'b0;
localparam HIGH = 1'b1;
//assign lcd_bl_out = HIGH; // backlight active high level
wire [15:0] color_t = YELLOW; //顶层色为黄色
wire [15:0] color_b = BLACK; //背景色为黑色
reg [7:0] x_cnt;
reg [7:0] y_cnt;
reg [131:0] ram_data_r;
reg [8:0] data_reg; //
reg [8:0] reg_setxy [10:0];
reg [8:0] reg_init [72:0];
reg [2:0] cnt_main;
reg [2:0] cnt_init;
reg [2:0] cnt_scan;
reg [5:0] cnt_write;
reg [15:0] cnt_delay;
reg [15:0] num_delay;
reg [15:0] cnt;
reg high_word;
reg [2:0] state = IDLE;
reg [2:0] state_back = IDLE;
always@(posedge clk_in or negedge rst_n_in) begin
if(!rst_n_in) begin
x_cnt <= 8'd0;
y_cnt <= 8'd0;
ram_lcd_clk_en <= 1'b0;
ram_lcd_addr <= 8'd0;
cnt_main <= 3'd0;
cnt_init <= 3'd0;
cnt_scan <= 3'd0;
cnt_write <= 6'd0;
cnt_delay <= 16'd0;
num_delay <= 16'd50;
cnt <= 16'd0;
high_word <= 1'b1;
lcd_bl_out <= LOW;
state <= IDLE;
state_back <= IDLE;
end else begin
case(state)
IDLE:begin
x_cnt <= 8'd0;
y_cnt <= 8'd0;
ram_lcd_clk_en <= 1'b0;
ram_lcd_addr <= 8'd0;
cnt_main <= 3'd0;
cnt_init <= 3'd0;
cnt_scan <= 3'd0;
cnt_write <= 6'd0;
cnt_delay <= 16'd0;
num_delay <= 16'd50;
cnt <= 16'd0;
high_word <= 1'b1;
state <= MAIN;
state_back <= MAIN;
end
MAIN:begin
case(cnt_main) //MAIN状态
3'd0: begin state <= INIT; cnt_main <= cnt_main + 1'b1; end
3'd1: begin state <= SCAN; cnt_main <= cnt_main + 1'b1; end
3'd2: begin cnt_main <= 1'b1; end
default: state <= IDLE;
endcase
end
INIT:begin //初始化状态
case(cnt_init)
3'd0: begin lcd_rst_n_out <= 1'b0; cnt_init <= cnt_init + 1'b1; end //复位有效
3'd1: begin num_delay <= 16'd3000; state <= DELAY; state_back <= INIT; cnt_init <= cnt_init + 1'b1; end //延时
3'd2: begin lcd_rst_n_out <= 1'b1; cnt_init <= cnt_init + 1'b1; end //复位恢复
3'd3: begin num_delay <= 16'd3000; state <= DELAY; state_back <= INIT; cnt_init <= cnt_init + 1'b1; end //延时
3'd4: begin
if(cnt>=INIT_DEPTH) begin //当73条指令及数据发出后,配置完成
cnt <= 16'd0;
cnt_init <= cnt_init + 1'b1;
end else begin
data_reg <= reg_init[cnt];
if(cnt==16'd0) num_delay <= 16'd50000; //第一条指令需要较长延时
else num_delay <= 16'd50;
cnt <= cnt + 16'd1;
state <= WRITE;
state_back <= INIT;
end
end
3'd5: begin cnt_init <= 1'b0; state <= MAIN; end //初始化完成,返回MAIN状态
default: state <= IDLE;
endcase
end
SCAN:begin //刷屏状态,从RAM中读取数据刷屏
case(cnt_scan)
3'd0: begin //确定刷屏的区域坐标,这里为全屏
if(cnt >= 11) begin //
cnt <= 16'd0;
cnt_scan <= cnt_scan + 1'b1;
end else begin
data_reg <= reg_setxy[cnt];
cnt <= cnt + 16'd1;
num_delay <= 16'd50;
state <= WRITE;
state_back <= SCAN;
end
end
3'd1: begin ram_lcd_clk_en <= HIGH; ram_lcd_addr <= y_cnt; cnt_scan <= cnt_scan + 1'b1; end //RAM时钟使能
3'd2: begin cnt_scan <= cnt_scan + 1'b1; end //延时一个时钟
3'd3: begin ram_lcd_clk_en <= LOW; ram_data_r <= ram_lcd_data; cnt_scan <= cnt_scan + 1'b1; end //读取RAM数据,同时关闭RAM时钟使能
3'd4: begin //每个像素点需要16bit的数据,SPI每次传8bit,两次分别传送高8位和低8位
if(x_cnt>=LCD_W) begin //当一个数据(一行屏幕)写完后,
x_cnt <= 8'd0;
if(y_cnt>=LCD_H) begin y_cnt <= 8'd0; cnt_scan <= cnt_scan + 1'b1; end //如果是最后一行就跳出循环
else begin y_cnt <= y_cnt + 1'b1; cnt_scan <= 3'd1; end //否则跳转至RAM时钟使能,循环刷屏
end else begin
if(high_word) data_reg <= {1'b1,(ram_data_r[x_cnt]? color_t[15:8]:color_b[15:8])}; //根据相应bit的状态判定显示顶层色或背景色,根据high_word的状态判定写高8位或低8位
else begin data_reg <= {1'b1,(ram_data_r[x_cnt]? color_t[7:0]:color_b[7:0])}; x_cnt <= x_cnt + 1'b1; end //根据相应bit的状态判定显示顶层色或背景色,根据high_word的状态判定写高8位或低8位,同时指向下一个bit
high_word <= ~high_word; //high_word的状态翻转
num_delay <= 16'd50; //设定延时时间
state <= WRITE; //跳转至WRITE状态
state_back <= SCAN; //执行完WRITE及DELAY操作后返回SCAN状态
end
end
3'd5: begin cnt_scan <= 1'b0; lcd_bl_out <= HIGH; state <= MAIN; end
default: state <= IDLE;
endcase
end
WRITE:begin //WRITE状态,将数据按照SPI时序发送给屏幕
if(cnt_write >= 6'd17) cnt_write <= 1'b0;
else cnt_write <= cnt_write + 1'b1;
case(cnt_write)
6'd0: begin lcd_dc_out <= data_reg[8]; end //9位数据最高位为命令数据控制位
6'd1: begin lcd_clk_out <= LOW; lcd_data_out <= data_reg[7]; end //先发高位数据
6'd2: begin lcd_clk_out <= HIGH; end
6'd3: begin lcd_clk_out <= LOW; lcd_data_out <= data_reg[6]; end
6'd4: begin lcd_clk_out <= HIGH; end
6'd5: begin lcd_clk_out <= LOW; lcd_data_out <= data_reg[5]; end
6'd6: begin lcd_clk_out <= HIGH; end
6'd7: begin lcd_clk_out <= LOW; lcd_data_out <= data_reg[4]; end
6'd8: begin lcd_clk_out <= HIGH; end
6'd9: begin lcd_clk_out <= LOW; lcd_data_out <= data_reg[3]; end
6'd10: begin lcd_clk_out <= HIGH; end
6'd11: begin lcd_clk_out <= LOW; lcd_data_out <= data_reg[2]; end
6'd12: begin lcd_clk_out <= HIGH; end
6'd13: begin lcd_clk_out <= LOW; lcd_data_out <= data_reg[1]; end
6'd14: begin lcd_clk_out <= HIGH; end
6'd15: begin lcd_clk_out <= LOW; lcd_data_out <= data_reg[0]; end //后发低位数据
6'd16: begin lcd_clk_out <= HIGH; end
6'd17: begin lcd_clk_out <= LOW; state <= DELAY; end //
default: state <= IDLE;
endcase
end
DELAY:begin //延时状态
if(cnt_delay >= num_delay) begin
cnt_delay <= 16'd0;
state <= state_back;
end else cnt_delay <= cnt_delay + 1'b1;
end
default:state <= IDLE;
endcase
end
end
// data for setxy
initial //设定显示区域指令及数据
begin
reg_setxy[0] = {1'b0,8'h2a};
reg_setxy[1] = {1'b1,8'h00};
reg_setxy[2] = {1'b1,8'h00};
reg_setxy[3] = {1'b1,8'h00};
reg_setxy[4] = {1'b1,LCD_W-1};
reg_setxy[5] = {1'b0,8'h2b};
reg_setxy[6] = {1'b1,8'h00};
reg_setxy[7] = {1'b1,8'h00};
reg_setxy[8] = {1'b1,8'h00};
reg_setxy[9] = {1'b1,LCD_H-1};
reg_setxy[10] = {1'b0,8'h2c};
end
// data for init
initial //LCD初始化的命令及数据
begin
reg_init[0] = {1'b0,8'h11};
reg_init[1] = {1'b0,8'hb1};
reg_init[2] = {1'b1,8'h05};
reg_init[3] = {1'b1,8'h3c};
reg_init[4] = {1'b1,8'h3c};
reg_init[5] = {1'b0,8'hb2};
reg_init[6] = {1'b1,8'h05};
reg_init[7] = {1'b1,8'h3c};
reg_init[8] = {1'b1,8'h3c};
reg_init[9] = {1'b0,8'hb3};
reg_init[10] = {1'b1,8'h05};
reg_init[11] = {1'b1,8'h3c};
reg_init[12] = {1'b1,8'h3c};
reg_init[13] = {1'b1,8'h05};
reg_init[14] = {1'b1,8'h3c};
reg_init[15] = {1'b1,8'h3c};
reg_init[16] = {1'b0,8'hb4};
reg_init[17] = {1'b1,8'h03};
reg_init[18] = {1'b0,8'hc0};
reg_init[19] = {1'b1,8'h28};
reg_init[20] = {1'b1,8'h08};
reg_init[21] = {1'b1,8'h04};
reg_init[22] = {1'b0,8'hc1};
reg_init[23] = {1'b1,8'hc0};
reg_init[24] = {1'b0,8'hc2};
reg_init[25] = {1'b1,8'h0d};
reg_init[26] = {1'b1,8'h00};
reg_init[27] = {1'b0,8'hc3};
reg_init[28] = {1'b1,8'h8d};
reg_init[29] = {1'b1,8'h2a};
reg_init[30] = {1'b0,8'hc4};
reg_init[31] = {1'b1,8'h8d};
reg_init[32] = {1'b1,8'hee};
reg_init[32] = {1'b0,8'hc5};
reg_init[33] = {1'b1,8'h1a};
reg_init[34] = {1'b0,8'h36};
reg_init[35] = {1'b1,8'hc0};
reg_init[36] = {1'b0,8'he0};
reg_init[37] = {1'b1,8'h04};
reg_init[38] = {1'b1,8'h22};
reg_init[39] = {1'b1,8'h07};
reg_init[40] = {1'b1,8'h0a};
reg_init[41] = {1'b1,8'h2e};
reg_init[42] = {1'b1,8'h30};
reg_init[43] = {1'b1,8'h25};
reg_init[44] = {1'b1,8'h2a};
reg_init[45] = {1'b1,8'h28};
reg_init[46] = {1'b1,8'h26};
reg_init[47] = {1'b1,8'h2e};
reg_init[48] = {1'b1,8'h3a};
reg_init[49] = {1'b1,8'h00};
reg_init[50] = {1'b1,8'h01};
reg_init[51] = {1'b1,8'h03};
reg_init[52] = {1'b1,8'h13};
reg_init[53] = {1'b0,8'he1};
reg_init[54] = {1'b1,8'h04};
reg_init[55] = {1'b1,8'h16};
reg_init[56] = {1'b1,8'h06};
reg_init[57] = {1'b1,8'h0d};
reg_init[58] = {1'b1,8'h2d};
reg_init[59] = {1'b1,8'h26};
reg_init[60] = {1'b1,8'h23};
reg_init[61] = {1'b1,8'h27};
reg_init[62] = {1'b1,8'h27};
reg_init[63] = {1'b1,8'h25};
reg_init[64] = {1'b1,8'h2d};
reg_init[65] = {1'b1,8'h3b};
reg_init[66] = {1'b1,8'h00};
reg_init[67] = {1'b1,8'h01};
reg_init[68] = {1'b1,8'h04};
reg_init[69] = {1'b1,8'h13};
reg_init[70] = {1'b0,8'h3a};
reg_init[71] = {1'b1,8'h05};
reg_init[72] = {1'b0,8'h29};
end
endmodule </code>
====小结====
本节主要为大家讲解了VGA显示的原理、时序及软件设计,需要大家掌握的同时自己创建工程,通过整个设计流程,生成FPGA配置文件加载测试。
如果你对Diamond软件的使用不了解,请参考这里:Diamond的使用。
====相关资料====
使用STEP-MXO2第二代的VGA显示驱动程序: 后续会有下载连接 待更新
使用STEP-MAX10的VGA显示驱动程序: 后续会有下载连接 待更新