**这是本文档旧的修订版!**

A universal asynchronous receiver/transmitter, abbreviated UART /ˈjuːɑːrt/, is a computer hardware device that translates data between characters (usually bytes) in a computer and an asynchronous serial communication format that encapsulates those characters between start bits and stop bits. UARTs are commonly used in conjunction with communication standards such as TIA (formerly EIA) RS-232, RS-422 or RS-485. The universal designation indicates that the data format and transmission speeds are configurable. The electric signaling levels and methods (such as differential signaling etc.) are handled by a driver circuit external to the UART.

A UART is usually an individual (or part of an) integrated circuit (IC) used for serial communications over a computer or peripheral device serial port. UARTs are now commonly included in microcontrollers. A dual UART, or DUART, combines two UARTs into a single chip. An octal UART or OCTART combines eight UARTs into one package, such as the Exar XR16L788 or the NXP SCC2698. A related device, the Universal Synchronous/Asynchronous Receiver/Transmitter (USART) also supports synchronous operation.

Transmitting and receiving serial data

The universal asynchronous receiver/transmitter (UART) takes bytes of data and transmits the individual bits in a sequential fashion.[ At the destination, a second UART re-assembles the bits into complete bytes. Each UART contains a shift register, which is the fundamental method of conversion between serial and parallel forms. Serial transmission of digital information (bits) through a single wire or other medium is less costly than parallel transmission through multiple wires.

The UART usually does not directly generate or receive the external signals used between different items of equipment. Separate interface devices are used to convert the logic level signals of the UART to and from the external signalling levels. External signals may be of many different forms. Examples of standards for voltage signaling are RS-232, RS-422 and RS-485 from the EIA. Historically, current (in current loops) was used in telegraph circuits. Some signaling schemes do not use electrical wires. Examples of such are optical fiber, IrDA (infrared), and (wireless) Bluetooth in its Serial Port Profile (SPP). Some signaling schemes use modulation of a carrier signal (with or without wires). Examples are modulation of audio signals with phone line modems, RF modulation with data radios, and the DC-LIN for power line communication.

Communication may be simplex (in one direction only, with no provision for the receiving device to send information back to the transmitting device), full duplex (both devices send and receive at the same time) or half duplex (devices take turns transmitting and receiving).

Data framing

Bit number 1 2 3 4 5 6 7 8 9 10 11 12 Start bit 5–9 data bits Stop bit(s) Start Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Stop The idle, no data state is high-voltage, or powered. This is a historic legacy from telegraphy, in which the line is held high to show that the line and transmitter are not damaged. Each character is sent as a logic low start bit, a configurable number of data bits (usually 8, but users can choose 5 to 8 or 9 bits depending on which UART is in use), an optional parity bit if the number of bits per character chosen is not 9 bits, and one or more logic high stop bits. In most applications the least significant data bit (the one on the left in this diagram) is transmitted first, but there are exceptions (such as the IBM 2741 printing terminal).

The start bit signals the receiver that a new character is coming. The next five to nine bits, depending on the code set employed, represent the character. If a parity bit is used, it would be placed after all of the data bits. The next one or two bits are always in the mark (logic high, i.e., '1') condition and called the stop bit(s). They signal the receiver that the character is completed. Since the start bit is logic low (0) and the stop bit is logic high (1) there are always at least two guaranteed signal changes between characters.

If the line is held in the logic low condition for longer than a character time, this is a break condition that can be detected by the UART.

Receiver

All operations of the UART hardware are controlled by a clock signal which runs at a multiple of the data rate, typically 8 times the bit rate. The receiver tests the state of the incoming signal on each clock pulse, looking for the beginning of the start bit. If the apparent start bit lasts at least one-half of the bit time, it is valid and signals the start of a new character. If not, it is considered a spurious pulse and is ignored. After waiting a further bit time, the state of the line is again sampled and the resulting level clocked into a shift register. After the required number of bit periods for the character length (5 to 8 bits, typically) have elapsed, the contents of the shift register are made available (in parallel fashion) to the receiving system. The UART will set a flag indicating new data is available, and may also generate a processor interrupt to request that the host processor transfers the received data.

Communicating UARTs usually have no shared timing system apart from the communication signal. Typically, UARTs resynchronize their internal clocks on each change of the data line that is not considered a spurious pulse. Obtaining timing information in this manner, they reliably receive when the transmitter is sending at a slightly different speed than it should. Simplistic UARTs do not do this, instead they resynchronize on the falling edge of the start bit only, and then read the center of each expected data bit, and this system works if the broadcast data rate is accurate enough to allow the stop bits to be sampled reliably.

It is a standard feature for a UART to store the most recent character while receiving the next. This “double buffering” gives a receiving computer an entire character transmission time to fetch a received character. Many UARTs have a small first-in, first-out FIFO buffer memory between the receiver shift register and the host system interface. This allows the host processor even more time to handle an interrupt from the UART and prevents loss of received data at high rates.

Transmitter

Transmission operation is simpler as the timing does not have to be determined from the line state, nor is it bound to any fixed timing intervals. As soon as the sending system deposits a character in the shift register (after completion of the previous character), the UART generates a start bit, shifts the required number of data bits out to the line, generates and sends the parity bit (if used), and sends the stop bits. Since full-duplex operation requires characters to be sent and received at the same time, UARTs use two different shift registers for transmitted and received characters. High performance UARTs could contain a transmit FIFO (first in first out) buffer to allow a CPU or DMA controller to deposit multiple characters in a burst into the FIFO rather than have to deposit one character at a time into the FIFO. Since transmission of a single or multiple characters may take a long time relative to CPU speeds, a UART maintains a flag showing busy status so that the host system knows if there is at least one character in the transmit buffer or shift register; “ready for next character(s)” may also be signaled with an interrupt.

Application

Transmitting and receiving UARTs must be set for the same bit speed, character length, parity, and stop bits for proper operation. The receiving UART may detect some mismatched settings and set a “framing error” flag bit for the host system; in exceptional cases the receiving UART will produce an erratic stream of mutilated characters and transfer them to the host system.

Typical serial ports used with personal computers connected to modems use eight data bits, no parity, and one stop bit; for this configuration the number of ASCII characters per second equals the bit rate divided by 10.

Some very low-cost home computers or embedded systems dispense with a UART and use the CPU to sample the state of an input port or directly manipulate an output port for data transmission. While very CPU-intensive (since the CPU timing is critical), the UART chip can thus be omitted, saving money and space. The technique is known as bit-banging.

History

Some early telegraph schemes used variable-length pulses (as in Morse code) and rotating clockwork mechanisms to transmit alphabetic characters. The first serial communication devices (with fixed-length pulses) were rotating mechanical switches (commutators). Various character codes using 5, 6, 7, or 8 data bits became common in teleprinters and later as computer peripherals. The teletypewriter made an excellent general-purpose I/O device for a small computer.

Gordon Bell of DEC designed the first UART, occupying an entire circuit board called a line unit, for the PDP series of computers beginning with the PDP-1.[2][3] According to Bell, the main innovation of the UART was its use of sampling to convert the signal into the digital domain, allowing more reliable timing than previous circuits that used analog timing devices with manually adjusted potentiometers.[4] To reduce the cost of wiring, backplane and other components, these computers also pioneered flow control using XON and XOFF characters rather than hardware wires.

DEC condensed the line unit design into an early single-chip UART for their own use.[2] Western Digital developed this into the first widely available single-chip UART, the WD1402A, around 1971. This was an early example of a medium scale integrated circuit. Another popular chip was the SCN2651 from the Signetics 2650 family.

An example of an early 1980s UART was the National Semiconductor 8250. In the 1990s, newer UARTs were developed with on-chip buffers. This allowed higher transmission speed without data loss and without requiring such frequent attention from the computer. For example, the popular National Semiconductor 16550 has a 16 byte FIFO, and spawned many variants, including the 16C550, 16C650, 16C750, and 16C850.

Depending on the manufacturer, different terms are used to identify devices that perform the UART functions. Intel called their 8251 device a “Programmable Communication Interface”. MOS Technology 6551 was known under the name “Asynchronous Communications Interface Adapter” (ACIA). The term “Serial Communications Interface” (SCI) was first used at Motorola around 1975 to refer to their start-stop asynchronous serial interface device, which others were calling a UART. Zilog manufactured a number of Serial Communication Controllers or SCCs.

After the RS-232 COM port was removed from most IBM PC compatible computers in the 2000s, an external USB-to-UART serial adapter cable was used to compensate for the loss. A major supplier of these chips is FTDI.[5]

Structure

A UART usually contains the following components:

  • a clock generator, usually a multiple of the bit rate to allow sampling in the middle of a bit period.
  • input and output shift registers
  • transmit/receive control
  • read/write control logic
  • transmit/receive buffers (optional)
  • system data bus buffer (optional)
  • First-in, first-out (FIFO) buffer memory (optional)
  • Signals needed by a third party DMA controller (optional)
  • Integrated bus mastering DMA controller (optional)

Special receiver conditions

Overrun error

An “overrun error” occurs when the receiver cannot process the character that just came in before the next one arrives. Various devices have different amounts of buffer space to hold received characters. The CPU or DMA controller must service the UART in order to remove characters from the input buffer. If the CPU or DMA controller does not service the UART quickly enough and the buffer becomes full, an Overrun Error will occur, and incoming characters will be lost.

Underrun error

An “underrun error” occurs when the UART transmitter has completed sending a character and the transmit buffer is empty. In asynchronous modes this is treated as an indication that no data remains to be transmitted, rather than an error, since additional stop bits can be appended. This error indication is commonly found in USARTs, since an underrun is more serious in synchronous systems.

Framing error

A “framing error” occurs when the designated “start” and “stop” bits are not found. As the “start” bit is used to identify the beginning of an incoming character, it acts as a reference for the remaining bits. If the data line is not in the expected state (hi/lo) when the “stop” bit is expected, a Framing Error will occur.

Parity error

A Parity Error occurs when the parity of the number of 1 bits disagrees with that specified by the parity bit. Use of a parity bit is optional, so this error will only occur if parity-checking has been enabled.

Break condition

A “break condition” occurs when the receiver input is at the “space” (logic low, i.e., '0') level for longer than some duration of time, typically, for more than a character time. This is not necessarily an error, but appears to the receiver as a character of all zero bits with a framing error. The term “break” derives from current loop signaling, which was the traditional signaling used for teletypewriters. The “spacing” condition of a current loop line is indicated by no current flowing, and a very long period of no current flowing is often caused by a break or other fault in the line.

Some equipment will deliberately transmit the “space” level for longer than a character as an attention signal. When signaling rates are mismatched, no meaningful characters can be sent, but a long “break” signal can be a useful way to get the attention of a mismatched receiver to do something (such as resetting itself). Unix-like systems can use the long “break” level as a request to change the signaling rate, to support dial-in access at multiple signaling rates.

UART models

Model Description WD1402A The first single-chip UART on general sale. Introduced about 1971. Compatible chips included the Fairchild TR1402A and the General Instruments AY-5-1013.[6] Exar XR21V1410 Intersil 6402 CDP 1854 (RCA, now Intersil) Zilog Z8440 2000 kbit/s. Universal Synchronous/Asynchronous Receiver/Transmitter. Async, Bisync, SDLC, HDLC, X.25. CRC. 4-byte RX buffer. 2-byte TX buffer. Provides signals needed by a third party DMA controller to perform DMA transfers.[7] Z8530/Z85C30 This Universal Synchronous/Asynchronous Receiver/Transmitter has a 3 byte receive buffer and a 1 byte transmit buffer. It has hardware to accelerate the processing of HDLC and SDLC. The CMOS version (Z85C30) provides signals to allow a third party DMA controller to perform DMA transfers. It can do asynchronous, byte level synchronous, and bit level synchronous communications.[8] 8250 Obsolete with 1-byte buffers. These UARTs' maximum standard serial port speed is 9600 bits per second if the operating system has a 1 millisecond interrupt latency. 8250 UARTs were used in the IBM PC 5150 and IBM PC/XT, while the 16450 UART were used in IBM PC/AT-series computers. 8251 Motorola 6850 6551 Rockwell 65C52 16450 82510 This UART allows asynchronous operation up to 288 kbit/s, with two independent four-byte FIFOs. It was produced by Intel at least from 1993 to 1996, and Innovastic Semiconductor has a 2011 Data Sheet for IA82510. 16550 This UART's FIFO is broken, so it cannot safely run any faster than the 16450 UART. The 16550A and later versions fix this bug. 16550A This UART has 16-byte FIFO buffers. Its receive interrupt trigger levels can be set to 1, 4, 8, or 14 characters. Its maximum standard serial port speed if the operating system has a 1 millisecond interrupt latency is 115.2 kbit/s. Operating systems with lower interrupt latencies could handle higher baud rates like 230.4 kbit/s or 460.8 kbit/s. This chip can provide signals that are needed to allow a third party DMA controller to perform DMA transfers to and from the UART if the DMA mode this UART introduces is enabled.[9] It was introduced by National Semiconductor, which has been sold to Texas Instruments. National Semiconductor claimed that this UART could physically run at up to 1.5 Mbit/s. 16C552 16650 This UART was introduced by Startech Semiconductor which is now owned by Exar Corporation and is not related to Startech.com. Early versions have a broken FIFO buffer and therefore cannot safely run any faster than the 16450 UART.[10] Versions of this UART that were not broken have 32-character FIFO buffers and could function at standard serial port speeds up to 230.4 kbit/s if the operating system has a 1 millisecond interrupt latency. Current versions of this UART by Exar claim to be able to physically handle up to 1.5 Mbit/s. This UART introduces the Auto-RTS and Auto-CTS features in which the RTS# signal is controlled by the UART to signal the external device to stop transmitting when the UART's buffer is full to or beyond a user-set trigger point and to stop transmitting to the device when the device drives the CTS# signal high (logic 0). 16750 64-byte buffers. This UART can handle a maximum standard serial port speed of 460.8 kbit/s if the maximum interrupt latency is 1 millisecond. This UART was introduced by Texas Instruments. TI claims that early models can run up to 1 Mbit/s physically, and later models can run up to 5 Mbit/s physically. 16850 128-byte buffers. This UART can handle a maximum standard serial port speed of 921.6 kbit/s if the maximum interrupt latency is 1 millisecond. This UART was introduced by Exar Corporation. Exar claims that early models can run up to 1.5 Mbit/s physically, and later models can run up to 6.25 Mbit/s physically. 16C850 16950 128-byte buffers. This UART can handle a maximum standard serial port speed of 921.6 kbit/s if the maximum interrupt latency is 1 millisecond and if the UART is not connected to an enabled DMA controller. This UART supports 9-bit characters in addition to the 5-8 bit characters that other UARTs support. This was introduced by Oxford Semiconductor, which is now owned by PLX Technology. Oxford/PLX claims that this UART can run up to 15 Mbit/s physically. PCI Express variants by Oxford/PLX can safely run much faster than other variants because they are integrated with a first party bus mastering PCIe DMA controller. This DMA controller is controlled by the UART's DMA mode signals that were defined for the 16550. The DMA controller will prevent buffer overruns by moving data in the receive buffer to the host computer's memory via PCIe, and can speed up transmission by moving data to be sent in the host computer's memory to the UART's transmit buffer if it is not full. Both of these operations do require some setup by the CPU, but are automated by the UART and the DMA controller after setup is complete. 16C950 16954 Quad port version of the 16950/16C950. 128-byte buffers per port. This UART can handle a maximum standard serial port speed of 921.6 kbit/s if the maximum interrupt latency is 1 millisecond and if the UART is not connected to an enabled DMA controller. This UART supports 9-bit characters in addition to the 5-8 bit characters that other UARTs support. This was introduced by Oxford Semiconductor, which is now owned by PLX Technology. Oxford/PLX claims that this UART can run up to 15 Mbit/s physically. PCI Express variants by Oxford/PLX can safely run much faster than other variants because they are integrated with a first party bus mastering PCIe DMA controller. This DMA controller is controlled by the UART's DMA mode signals that were defined for the 16550. The DMA controller will prevent buffer overruns by moving data in the receive buffer to the host computer's memory via PCIe, and can speed up transmission by moving data to be sent in the host computer's memory to the UART's transmit buffer if it is not full. Both of these operations do require some setup by the CPU, but are automated by the UART and the DMA controller after setup is complete. 16C954 16C1550/16C1551 UART with 16-byte FIFO buffers. Up to 1.5 Mbit/s. The ST16C155X is not compatible with the industry standard 16550 and will not work with the standard serial port driver in Microsoft Windows. 16C2450 Dual UART with 1-byte FIFO buffers. 16C2550 Dual UART with 16-byte FIFO buffers. Pin-to-pin and functional compatible to 16C2450. Software compatible with INS8250 and NS16C550. SCC2691 Currently produced by NXP, the 2691 is a single channel UART that also includes a programmable counter/timer. The 2691 has a single byte transmitter holding register and a 4-byte receive FIFO. Maximum standard speed of the 2692 is 115.2 kbit/s. Non-standard speeds are supported. SCC2692 Currently produced by NXP, these dual UARTs (DUART) are essentially a pair of SCC2691 UARTs in a single package, but with a common counter/timer. Each channel is independently programmable and supports independent transmit and receive data rates. Like the 2691, the 2692 has a single byte transmitter holding register and a 4-byte receive FIFO per channel. Maximum standard speed of both of the 2692's channels is 115.2 kbit/s. The 26C92 is an upwardly compatible version of the dual channel 2692, with 8-byte transmit and receive FIFOs for improved performance during continuous bi-directional asynchronous transmission (CBAT) on both channels at the maximum standard speed of 230.4 kbit/s.

Both the 2692 and 26C92 may also be operated in RS-422 and RS-485 modes, and can also be programmed to support non-standard data rates. The devices are produced in PDIP-40, PLCC-44 and 44 pin QFP packages, and are readily adaptable to both Motorola and Intel buses. They have also been successfully adapted to the 65C02 and 65C816 buses.

SC26C92 SCC2698B Currently produced by NXP, the 2698 octal UART (OCTART) is essentially four SCC2692 DUARTs in a single package. Specifications are the same as the SCC2692 (not the SCC26C92). The device is produced in PDIP-64 and PLCC-84 packages, and is readily adaptable to both Motorola and Intel buses. The 2698 has also been successfully adapted to the 65C02 and 65C816 buses. SCC28C94 Currently produced by NXP, the 28C94 quadruple UART (QUART) is functionally similar to a pair of SCC26C92 DUARTs mounted in a common package. Some additional signals are present for interrupt management and the auxiliary input/output pins are arranged differently than those of the 26C92. Otherwise, the programming model for the 28C94 is very similar to that of the 26C92, requiring only minor code changes. The 28C94 supports a maximum standard speed of 230.4 kbit/s, is available in a PLCC-52 package, and is readily adaptable to both Motorola and Intel buses. SCC28L198 Currently produced by NXP, the 28L198 octal UART (OCTART) is essentially an up